This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnf . This part of the proof is showing uniqueness of the Cantor normal form. We already know that the relation T is a strict order, but we haven't shown it is a well-order yet. But being a strict order is enough to show that two distinct F , G are T -related as F < G or G < F , and WLOG assuming that F < G , we show that CNF respects this order and maps these two to different ordinals. (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 2-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | ||
| oemapval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | ||
| oemapval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | ||
| oemapvali.r | ⊢ ( 𝜑 → 𝐹 𝑇 𝐺 ) | ||
| oemapvali.x | ⊢ 𝑋 = ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } | ||
| cantnflem1.o | ⊢ 𝑂 = OrdIso ( E , ( 𝐺 supp ∅ ) ) | ||
| cantnflem1.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑘 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | ||
| Assertion | cantnflem1 | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 5 | oemapval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | |
| 6 | oemapval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | |
| 7 | oemapvali.r | ⊢ ( 𝜑 → 𝐹 𝑇 𝐺 ) | |
| 8 | oemapvali.x | ⊢ 𝑋 = ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } | |
| 9 | cantnflem1.o | ⊢ 𝑂 = OrdIso ( E , ( 𝐺 supp ∅ ) ) | |
| 10 | cantnflem1.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑘 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 11 | ovex | ⊢ ( 𝐺 supp ∅ ) ∈ V | |
| 12 | 9 | oion | ⊢ ( ( 𝐺 supp ∅ ) ∈ V → dom 𝑂 ∈ On ) |
| 13 | 11 12 | mp1i | ⊢ ( 𝜑 → dom 𝑂 ∈ On ) |
| 14 | uniexg | ⊢ ( dom 𝑂 ∈ On → ∪ dom 𝑂 ∈ V ) | |
| 15 | sucidg | ⊢ ( ∪ dom 𝑂 ∈ V → ∪ dom 𝑂 ∈ suc ∪ dom 𝑂 ) | |
| 16 | 13 14 15 | 3syl | ⊢ ( 𝜑 → ∪ dom 𝑂 ∈ suc ∪ dom 𝑂 ) |
| 17 | 1 2 3 4 5 6 7 8 | cantnflem1a | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 supp ∅ ) ) |
| 18 | n0i | ⊢ ( 𝑋 ∈ ( 𝐺 supp ∅ ) → ¬ ( 𝐺 supp ∅ ) = ∅ ) | |
| 19 | 17 18 | syl | ⊢ ( 𝜑 → ¬ ( 𝐺 supp ∅ ) = ∅ ) |
| 20 | ovexd | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ∈ V ) | |
| 21 | 1 2 3 9 6 | cantnfcl | ⊢ ( 𝜑 → ( E We ( 𝐺 supp ∅ ) ∧ dom 𝑂 ∈ ω ) ) |
| 22 | 21 | simpld | ⊢ ( 𝜑 → E We ( 𝐺 supp ∅ ) ) |
| 23 | 9 | oien | ⊢ ( ( ( 𝐺 supp ∅ ) ∈ V ∧ E We ( 𝐺 supp ∅ ) ) → dom 𝑂 ≈ ( 𝐺 supp ∅ ) ) |
| 24 | 20 22 23 | syl2anc | ⊢ ( 𝜑 → dom 𝑂 ≈ ( 𝐺 supp ∅ ) ) |
| 25 | breq1 | ⊢ ( dom 𝑂 = ∅ → ( dom 𝑂 ≈ ( 𝐺 supp ∅ ) ↔ ∅ ≈ ( 𝐺 supp ∅ ) ) ) | |
| 26 | ensymb | ⊢ ( ∅ ≈ ( 𝐺 supp ∅ ) ↔ ( 𝐺 supp ∅ ) ≈ ∅ ) | |
| 27 | en0 | ⊢ ( ( 𝐺 supp ∅ ) ≈ ∅ ↔ ( 𝐺 supp ∅ ) = ∅ ) | |
| 28 | 26 27 | bitri | ⊢ ( ∅ ≈ ( 𝐺 supp ∅ ) ↔ ( 𝐺 supp ∅ ) = ∅ ) |
| 29 | 25 28 | bitrdi | ⊢ ( dom 𝑂 = ∅ → ( dom 𝑂 ≈ ( 𝐺 supp ∅ ) ↔ ( 𝐺 supp ∅ ) = ∅ ) ) |
| 30 | 24 29 | syl5ibcom | ⊢ ( 𝜑 → ( dom 𝑂 = ∅ → ( 𝐺 supp ∅ ) = ∅ ) ) |
| 31 | 19 30 | mtod | ⊢ ( 𝜑 → ¬ dom 𝑂 = ∅ ) |
| 32 | 21 | simprd | ⊢ ( 𝜑 → dom 𝑂 ∈ ω ) |
| 33 | nnlim | ⊢ ( dom 𝑂 ∈ ω → ¬ Lim dom 𝑂 ) | |
| 34 | 32 33 | syl | ⊢ ( 𝜑 → ¬ Lim dom 𝑂 ) |
| 35 | ioran | ⊢ ( ¬ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ↔ ( ¬ dom 𝑂 = ∅ ∧ ¬ Lim dom 𝑂 ) ) | |
| 36 | 31 34 35 | sylanbrc | ⊢ ( 𝜑 → ¬ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ) |
| 37 | 9 | oicl | ⊢ Ord dom 𝑂 |
| 38 | unizlim | ⊢ ( Ord dom 𝑂 → ( dom 𝑂 = ∪ dom 𝑂 ↔ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ) ) | |
| 39 | 37 38 | mp1i | ⊢ ( 𝜑 → ( dom 𝑂 = ∪ dom 𝑂 ↔ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ) ) |
| 40 | 36 39 | mtbird | ⊢ ( 𝜑 → ¬ dom 𝑂 = ∪ dom 𝑂 ) |
| 41 | orduniorsuc | ⊢ ( Ord dom 𝑂 → ( dom 𝑂 = ∪ dom 𝑂 ∨ dom 𝑂 = suc ∪ dom 𝑂 ) ) | |
| 42 | 37 41 | mp1i | ⊢ ( 𝜑 → ( dom 𝑂 = ∪ dom 𝑂 ∨ dom 𝑂 = suc ∪ dom 𝑂 ) ) |
| 43 | 42 | ord | ⊢ ( 𝜑 → ( ¬ dom 𝑂 = ∪ dom 𝑂 → dom 𝑂 = suc ∪ dom 𝑂 ) ) |
| 44 | 40 43 | mpd | ⊢ ( 𝜑 → dom 𝑂 = suc ∪ dom 𝑂 ) |
| 45 | 16 44 | eleqtrrd | ⊢ ( 𝜑 → ∪ dom 𝑂 ∈ dom 𝑂 ) |
| 46 | 9 | oiiso | ⊢ ( ( ( 𝐺 supp ∅ ) ∈ V ∧ E We ( 𝐺 supp ∅ ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
| 47 | 20 22 46 | syl2anc | ⊢ ( 𝜑 → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
| 48 | isof1o | ⊢ ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) | |
| 49 | 47 48 | syl | ⊢ ( 𝜑 → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) |
| 50 | f1ocnv | ⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) → ◡ 𝑂 : ( 𝐺 supp ∅ ) –1-1-onto→ dom 𝑂 ) | |
| 51 | f1of | ⊢ ( ◡ 𝑂 : ( 𝐺 supp ∅ ) –1-1-onto→ dom 𝑂 → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) | |
| 52 | 49 50 51 | 3syl | ⊢ ( 𝜑 → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) |
| 53 | 52 17 | ffvelcdmd | ⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) |
| 54 | elssuni | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 → ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) | |
| 55 | 53 54 | syl | ⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) |
| 56 | 44 32 | eqeltrrd | ⊢ ( 𝜑 → suc ∪ dom 𝑂 ∈ ω ) |
| 57 | peano2b | ⊢ ( ∪ dom 𝑂 ∈ ω ↔ suc ∪ dom 𝑂 ∈ ω ) | |
| 58 | 56 57 | sylibr | ⊢ ( 𝜑 → ∪ dom 𝑂 ∈ ω ) |
| 59 | eleq1 | ⊢ ( 𝑦 = ∪ dom 𝑂 → ( 𝑦 ∈ dom 𝑂 ↔ ∪ dom 𝑂 ∈ dom 𝑂 ) ) | |
| 60 | sseq2 | ⊢ ( 𝑦 = ∪ dom 𝑂 → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) ) | |
| 61 | 59 60 | anbi12d | ⊢ ( 𝑦 = ∪ dom 𝑂 → ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) ↔ ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) ) ) |
| 62 | fveq2 | ⊢ ( 𝑦 = ∪ dom 𝑂 → ( 𝑂 ‘ 𝑦 ) = ( 𝑂 ‘ ∪ dom 𝑂 ) ) | |
| 63 | 62 | sseq2d | ⊢ ( 𝑦 = ∪ dom 𝑂 → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) ↔ 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
| 64 | 63 | ifbid | ⊢ ( 𝑦 = ∪ dom 𝑂 → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 65 | 64 | mpteq2dv | ⊢ ( 𝑦 = ∪ dom 𝑂 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 66 | 65 | fveq2d | ⊢ ( 𝑦 = ∪ dom 𝑂 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 67 | suceq | ⊢ ( 𝑦 = ∪ dom 𝑂 → suc 𝑦 = suc ∪ dom 𝑂 ) | |
| 68 | 67 | fveq2d | ⊢ ( 𝑦 = ∪ dom 𝑂 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) |
| 69 | 66 68 | eleq12d | ⊢ ( 𝑦 = ∪ dom 𝑂 → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) ) |
| 70 | 61 69 | imbi12d | ⊢ ( 𝑦 = ∪ dom 𝑂 → ( ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ) ↔ ( ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) ) ) |
| 71 | 70 | imbi2d | ⊢ ( 𝑦 = ∪ dom 𝑂 → ( ( 𝜑 → ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ) ) ↔ ( 𝜑 → ( ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) ) ) ) |
| 72 | eleq1 | ⊢ ( 𝑦 = ∅ → ( 𝑦 ∈ dom 𝑂 ↔ ∅ ∈ dom 𝑂 ) ) | |
| 73 | sseq2 | ⊢ ( 𝑦 = ∅ → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ ) ) | |
| 74 | 72 73 | anbi12d | ⊢ ( 𝑦 = ∅ → ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) ↔ ( ∅ ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ ) ) ) |
| 75 | fveq2 | ⊢ ( 𝑦 = ∅ → ( 𝑂 ‘ 𝑦 ) = ( 𝑂 ‘ ∅ ) ) | |
| 76 | 75 | sseq2d | ⊢ ( 𝑦 = ∅ → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) ↔ 𝑥 ⊆ ( 𝑂 ‘ ∅ ) ) ) |
| 77 | 76 | ifbid | ⊢ ( 𝑦 = ∅ → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 78 | 77 | mpteq2dv | ⊢ ( 𝑦 = ∅ → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 79 | 78 | fveq2d | ⊢ ( 𝑦 = ∅ → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 80 | suceq | ⊢ ( 𝑦 = ∅ → suc 𝑦 = suc ∅ ) | |
| 81 | 80 | fveq2d | ⊢ ( 𝑦 = ∅ → ( 𝐻 ‘ suc 𝑦 ) = ( 𝐻 ‘ suc ∅ ) ) |
| 82 | 79 81 | eleq12d | ⊢ ( 𝑦 = ∅ → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∅ ) ) ) |
| 83 | 74 82 | imbi12d | ⊢ ( 𝑦 = ∅ → ( ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ) ↔ ( ( ∅ ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∅ ) ) ) ) |
| 84 | eleq1 | ⊢ ( 𝑦 = 𝑢 → ( 𝑦 ∈ dom 𝑂 ↔ 𝑢 ∈ dom 𝑂 ) ) | |
| 85 | sseq2 | ⊢ ( 𝑦 = 𝑢 → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) | |
| 86 | 84 85 | anbi12d | ⊢ ( 𝑦 = 𝑢 → ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) ↔ ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ) |
| 87 | fveq2 | ⊢ ( 𝑦 = 𝑢 → ( 𝑂 ‘ 𝑦 ) = ( 𝑂 ‘ 𝑢 ) ) | |
| 88 | 87 | sseq2d | ⊢ ( 𝑦 = 𝑢 → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) ↔ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) |
| 89 | 88 | ifbid | ⊢ ( 𝑦 = 𝑢 → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 90 | 89 | mpteq2dv | ⊢ ( 𝑦 = 𝑢 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 91 | 90 | fveq2d | ⊢ ( 𝑦 = 𝑢 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 92 | suceq | ⊢ ( 𝑦 = 𝑢 → suc 𝑦 = suc 𝑢 ) | |
| 93 | 92 | fveq2d | ⊢ ( 𝑦 = 𝑢 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝐻 ‘ suc 𝑢 ) ) |
| 94 | 91 93 | eleq12d | ⊢ ( 𝑦 = 𝑢 → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) ) |
| 95 | 86 94 | imbi12d | ⊢ ( 𝑦 = 𝑢 → ( ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ) ↔ ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) ) ) |
| 96 | eleq1 | ⊢ ( 𝑦 = suc 𝑢 → ( 𝑦 ∈ dom 𝑂 ↔ suc 𝑢 ∈ dom 𝑂 ) ) | |
| 97 | sseq2 | ⊢ ( 𝑦 = suc 𝑢 → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ) ) | |
| 98 | 96 97 | anbi12d | ⊢ ( 𝑦 = suc 𝑢 → ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) ↔ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ) ) ) |
| 99 | fveq2 | ⊢ ( 𝑦 = suc 𝑢 → ( 𝑂 ‘ 𝑦 ) = ( 𝑂 ‘ suc 𝑢 ) ) | |
| 100 | 99 | sseq2d | ⊢ ( 𝑦 = suc 𝑢 → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) ↔ 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 101 | 100 | ifbid | ⊢ ( 𝑦 = suc 𝑢 → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 102 | 101 | mpteq2dv | ⊢ ( 𝑦 = suc 𝑢 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 103 | 102 | fveq2d | ⊢ ( 𝑦 = suc 𝑢 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 104 | suceq | ⊢ ( 𝑦 = suc 𝑢 → suc 𝑦 = suc suc 𝑢 ) | |
| 105 | 104 | fveq2d | ⊢ ( 𝑦 = suc 𝑢 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝐻 ‘ suc suc 𝑢 ) ) |
| 106 | 103 105 | eleq12d | ⊢ ( 𝑦 = suc 𝑢 → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
| 107 | 98 106 | imbi12d | ⊢ ( 𝑦 = suc 𝑢 → ( ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ) ↔ ( ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
| 108 | f1ocnvfv2 | ⊢ ( ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ∧ 𝑋 ∈ ( 𝐺 supp ∅ ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) | |
| 109 | 49 17 108 | syl2anc | ⊢ ( 𝜑 → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
| 110 | 109 | sseq2d | ⊢ ( 𝜑 → ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ 𝑥 ⊆ 𝑋 ) ) |
| 111 | 110 | ifbid | ⊢ ( 𝜑 → if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 112 | 111 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 113 | 112 | fveq2d | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 114 | 1 2 3 4 5 6 7 8 9 10 | cantnflem1d | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
| 115 | 113 114 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
| 116 | ss0 | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( ◡ 𝑂 ‘ 𝑋 ) = ∅ ) | |
| 117 | 116 | fveq2d | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = ( 𝑂 ‘ ∅ ) ) |
| 118 | 117 | sseq2d | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ 𝑥 ⊆ ( 𝑂 ‘ ∅ ) ) ) |
| 119 | 118 | ifbid | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 120 | 119 | mpteq2dv | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 121 | 120 | fveq2d | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 122 | suceq | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = ∅ → suc ( ◡ 𝑂 ‘ 𝑋 ) = suc ∅ ) | |
| 123 | 116 122 | syl | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → suc ( ◡ 𝑂 ‘ 𝑋 ) = suc ∅ ) |
| 124 | 123 | fveq2d | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) = ( 𝐻 ‘ suc ∅ ) ) |
| 125 | 121 124 | eleq12d | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∅ ) ) ) |
| 126 | 125 | adantl | ⊢ ( ( ∅ ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∅ ) ) ) |
| 127 | 115 126 | syl5ibcom | ⊢ ( 𝜑 → ( ( ∅ ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∅ ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∅ ) ) ) |
| 128 | ordelon | ⊢ ( ( Ord dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) → ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ) | |
| 129 | 37 53 128 | sylancr | ⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ) |
| 130 | 37 | a1i | ⊢ ( 𝜑 → Ord dom 𝑂 ) |
| 131 | ordelon | ⊢ ( ( Ord dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) → suc 𝑢 ∈ On ) | |
| 132 | 130 131 | sylan | ⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → suc 𝑢 ∈ On ) |
| 133 | onsseleq | ⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ∧ suc 𝑢 ∈ On ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ↔ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ∨ ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 ) ) ) | |
| 134 | 129 132 133 | syl2an2r | ⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ↔ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ∨ ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 ) ) ) |
| 135 | onsucb | ⊢ ( 𝑢 ∈ On ↔ suc 𝑢 ∈ On ) | |
| 136 | 132 135 | sylibr | ⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → 𝑢 ∈ On ) |
| 137 | eloni | ⊢ ( 𝑢 ∈ On → Ord 𝑢 ) | |
| 138 | 136 137 | syl | ⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → Ord 𝑢 ) |
| 139 | ordsssuc | ⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ∧ Ord 𝑢 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ) ) | |
| 140 | 129 138 139 | syl2an2r | ⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ) ) |
| 141 | ordtr | ⊢ ( Ord dom 𝑂 → Tr dom 𝑂 ) | |
| 142 | 37 141 | mp1i | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → Tr dom 𝑂 ) |
| 143 | simprl | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → suc 𝑢 ∈ dom 𝑂 ) | |
| 144 | trsuc | ⊢ ( ( Tr dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) → 𝑢 ∈ dom 𝑂 ) | |
| 145 | 142 143 144 | syl2anc | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑢 ∈ dom 𝑂 ) |
| 146 | simprr | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) | |
| 147 | 145 146 | jca | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) |
| 148 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝐵 ∈ On ) |
| 149 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) | |
| 150 | 2 148 149 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 151 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝐴 ∈ On ) |
| 152 | 1 151 148 | cantnff | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐴 CNF 𝐵 ) : 𝑆 ⟶ ( 𝐴 ↑o 𝐵 ) ) |
| 153 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) ) |
| 154 | 5 153 | mpbid | ⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) |
| 155 | 154 | simpld | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 156 | 155 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) |
| 157 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
| 158 | 6 157 | mpbid | ⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
| 159 | 158 | simpld | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 160 | 1 2 3 4 5 6 7 8 | oemapvali | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 161 | 160 | simp1d | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 162 | 159 161 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ 𝐴 ) |
| 163 | 162 | ne0d | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 164 | on0eln0 | ⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 165 | 2 164 | syl | ⊢ ( 𝜑 → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 166 | 163 165 | mpbird | ⊢ ( 𝜑 → ∅ ∈ 𝐴 ) |
| 167 | 166 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∅ ∈ 𝐴 ) |
| 168 | 156 167 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ 𝐴 ) |
| 169 | 168 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) : 𝐵 ⟶ 𝐴 ) |
| 170 | 3 | mptexd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ V ) |
| 171 | funmpt | ⊢ Fun ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) | |
| 172 | 171 | a1i | ⊢ ( 𝜑 → Fun ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 173 | 154 | simprd | ⊢ ( 𝜑 → 𝐹 finSupp ∅ ) |
| 174 | ssidd | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ ( 𝐹 supp ∅ ) ) | |
| 175 | 0ex | ⊢ ∅ ∈ V | |
| 176 | 175 | a1i | ⊢ ( 𝜑 → ∅ ∈ V ) |
| 177 | 155 174 3 176 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) |
| 178 | 177 | ifeq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ∅ , ∅ ) ) |
| 179 | ifid | ⊢ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ∅ , ∅ ) = ∅ | |
| 180 | 178 179 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = ∅ ) |
| 181 | 180 3 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) ⊆ ( 𝐹 supp ∅ ) ) |
| 182 | fsuppsssupp | ⊢ ( ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ V ∧ Fun ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∧ ( 𝐹 finSupp ∅ ∧ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) ⊆ ( 𝐹 supp ∅ ) ) ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) finSupp ∅ ) | |
| 183 | 170 172 173 181 182 | syl22anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) finSupp ∅ ) |
| 184 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ 𝑆 ↔ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) : 𝐵 ⟶ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) finSupp ∅ ) ) ) |
| 185 | 169 183 184 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ 𝑆 ) |
| 186 | 185 | adantr | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ 𝑆 ) |
| 187 | 152 186 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐴 ↑o 𝐵 ) ) |
| 188 | onelon | ⊢ ( ( ( 𝐴 ↑o 𝐵 ) ∈ On ∧ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐴 ↑o 𝐵 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ On ) | |
| 189 | 150 187 188 | syl2anc | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ On ) |
| 190 | 32 | adantr | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → dom 𝑂 ∈ ω ) |
| 191 | elnn | ⊢ ( ( suc 𝑢 ∈ dom 𝑂 ∧ dom 𝑂 ∈ ω ) → suc 𝑢 ∈ ω ) | |
| 192 | 143 190 191 | syl2anc | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → suc 𝑢 ∈ ω ) |
| 193 | 10 | cantnfvalf | ⊢ 𝐻 : ω ⟶ On |
| 194 | 193 | ffvelcdmi | ⊢ ( suc 𝑢 ∈ ω → ( 𝐻 ‘ suc 𝑢 ) ∈ On ) |
| 195 | 192 194 | syl | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐻 ‘ suc 𝑢 ) ∈ On ) |
| 196 | suppssdm | ⊢ ( 𝐺 supp ∅ ) ⊆ dom 𝐺 | |
| 197 | 196 159 | fssdm | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝐵 ) |
| 198 | 197 | adantr | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐺 supp ∅ ) ⊆ 𝐵 ) |
| 199 | 9 | oif | ⊢ 𝑂 : dom 𝑂 ⟶ ( 𝐺 supp ∅ ) |
| 200 | 199 | ffvelcdmi | ⊢ ( suc 𝑢 ∈ dom 𝑂 → ( 𝑂 ‘ suc 𝑢 ) ∈ ( 𝐺 supp ∅ ) ) |
| 201 | 143 200 | syl | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ suc 𝑢 ) ∈ ( 𝐺 supp ∅ ) ) |
| 202 | 198 201 | sseldd | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ suc 𝑢 ) ∈ 𝐵 ) |
| 203 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ ( 𝑂 ‘ suc 𝑢 ) ∈ 𝐵 ) → ( 𝑂 ‘ suc 𝑢 ) ∈ On ) | |
| 204 | 3 202 203 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ suc 𝑢 ) ∈ On ) |
| 205 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑂 ‘ suc 𝑢 ) ∈ On ) → ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ∈ On ) | |
| 206 | 2 204 205 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ∈ On ) |
| 207 | 155 | adantr | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 208 | 207 202 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ∈ 𝐴 ) |
| 209 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ∈ On ) | |
| 210 | 2 208 209 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ∈ On ) |
| 211 | omcl | ⊢ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ∈ On ∧ ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ∈ On ) → ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ∈ On ) | |
| 212 | 206 210 211 | syl2anc | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ∈ On ) |
| 213 | oaord | ⊢ ( ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ On ∧ ( 𝐻 ‘ suc 𝑢 ) ∈ On ∧ ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ∈ On ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ↔ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) ∈ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) ) | |
| 214 | 189 195 212 213 | syl3anc | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ↔ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) ∈ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) ) |
| 215 | ifeq1 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ∅ , ∅ ) ) | |
| 216 | ifid | ⊢ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ∅ , ∅ ) = ∅ | |
| 217 | 215 216 | eqtrdi | ⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = ∅ ) |
| 218 | ifeq1 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ∅ , ∅ ) ) | |
| 219 | ifid | ⊢ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ∅ , ∅ ) = ∅ | |
| 220 | 218 219 | eqtrdi | ⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = ∅ ) |
| 221 | 217 220 | eqeq12d | ⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → ( if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ↔ ∅ = ∅ ) ) |
| 222 | onss | ⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) | |
| 223 | 3 222 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ On ) |
| 224 | 223 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
| 225 | 224 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
| 226 | 204 | adantr | ⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑂 ‘ suc 𝑢 ) ∈ On ) |
| 227 | onsseleq | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑂 ‘ suc 𝑢 ) ∈ On ) → ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ) ) | |
| 228 | 225 226 227 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
| 229 | 228 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
| 230 | 199 | ffvelcdmi | ⊢ ( 𝑢 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑢 ) ∈ ( 𝐺 supp ∅ ) ) |
| 231 | 145 230 | syl | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ ( 𝐺 supp ∅ ) ) |
| 232 | 198 231 | sseldd | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ 𝐵 ) |
| 233 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝐵 ) → ( 𝑂 ‘ 𝑢 ) ∈ On ) | |
| 234 | 3 232 233 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ On ) |
| 235 | 234 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑂 ‘ 𝑢 ) ∈ On ) |
| 236 | onsssuc | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑂 ‘ 𝑢 ) ∈ On ) → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ 𝑥 ∈ suc ( 𝑂 ‘ 𝑢 ) ) ) | |
| 237 | 225 235 236 | syl2an2r | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ 𝑥 ∈ suc ( 𝑂 ‘ 𝑢 ) ) ) |
| 238 | vex | ⊢ 𝑢 ∈ V | |
| 239 | 238 | sucid | ⊢ 𝑢 ∈ suc 𝑢 |
| 240 | 47 | adantr | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
| 241 | isorel | ⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( 𝑢 ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) ) → ( 𝑢 E suc 𝑢 ↔ ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ suc 𝑢 ) ) ) | |
| 242 | 240 145 143 241 | syl12anc | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑢 E suc 𝑢 ↔ ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 243 | 238 | sucex | ⊢ suc 𝑢 ∈ V |
| 244 | 243 | epeli | ⊢ ( 𝑢 E suc 𝑢 ↔ 𝑢 ∈ suc 𝑢 ) |
| 245 | fvex | ⊢ ( 𝑂 ‘ suc 𝑢 ) ∈ V | |
| 246 | 245 | epeli | ⊢ ( ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
| 247 | 242 244 246 | 3bitr3g | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑢 ∈ suc 𝑢 ↔ ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 248 | 239 247 | mpbii | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
| 249 | eloni | ⊢ ( ( 𝑂 ‘ suc 𝑢 ) ∈ On → Ord ( 𝑂 ‘ suc 𝑢 ) ) | |
| 250 | 204 249 | syl | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → Ord ( 𝑂 ‘ suc 𝑢 ) ) |
| 251 | ordelsuc | ⊢ ( ( ( 𝑂 ‘ 𝑢 ) ∈ On ∧ Ord ( 𝑂 ‘ suc 𝑢 ) ) → ( ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ suc 𝑢 ) ↔ suc ( 𝑂 ‘ 𝑢 ) ⊆ ( 𝑂 ‘ suc 𝑢 ) ) ) | |
| 252 | 234 250 251 | syl2anc | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ suc 𝑢 ) ↔ suc ( 𝑂 ‘ 𝑢 ) ⊆ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 253 | 248 252 | mpbid | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → suc ( 𝑂 ‘ 𝑢 ) ⊆ ( 𝑂 ‘ suc 𝑢 ) ) |
| 254 | 253 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → suc ( 𝑂 ‘ 𝑢 ) ⊆ ( 𝑂 ‘ suc 𝑢 ) ) |
| 255 | 254 | sseld | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ∈ suc ( 𝑂 ‘ 𝑢 ) → 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 256 | 237 255 | sylbid | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) → 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 257 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) | |
| 258 | 240 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
| 259 | 258 48 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) |
| 260 | 1 2 3 4 5 6 7 8 9 | cantnflem1c | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑥 ∈ ( 𝐺 supp ∅ ) ) |
| 261 | f1ocnvfv2 | ⊢ ( ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) = 𝑥 ) | |
| 262 | 259 260 261 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) = 𝑥 ) |
| 263 | 257 262 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
| 264 | 145 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑢 ∈ dom 𝑂 ) |
| 265 | 259 50 51 | 3syl | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) |
| 266 | 265 260 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ) |
| 267 | isorel | ⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ) ) → ( 𝑢 E ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) | |
| 268 | 258 264 266 267 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑢 E ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) |
| 269 | fvex | ⊢ ( ◡ 𝑂 ‘ 𝑥 ) ∈ V | |
| 270 | 269 | epeli | ⊢ ( 𝑢 E ( ◡ 𝑂 ‘ 𝑥 ) ↔ 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) |
| 271 | fvex | ⊢ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ∈ V | |
| 272 | 271 | epeli | ⊢ ( ( 𝑂 ‘ 𝑢 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ↔ ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
| 273 | 268 270 272 | 3bitr3g | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ 𝑢 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) |
| 274 | 263 273 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) |
| 275 | ordelon | ⊢ ( ( Ord dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ) → ( ◡ 𝑂 ‘ 𝑥 ) ∈ On ) | |
| 276 | 37 266 275 | sylancr | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ◡ 𝑂 ‘ 𝑥 ) ∈ On ) |
| 277 | eloni | ⊢ ( ( ◡ 𝑂 ‘ 𝑥 ) ∈ On → Ord ( ◡ 𝑂 ‘ 𝑥 ) ) | |
| 278 | 276 277 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → Ord ( ◡ 𝑂 ‘ 𝑥 ) ) |
| 279 | ordelsuc | ⊢ ( ( 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ∧ Ord ( ◡ 𝑂 ‘ 𝑥 ) ) → ( 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ↔ suc 𝑢 ⊆ ( ◡ 𝑂 ‘ 𝑥 ) ) ) | |
| 280 | 274 278 279 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑢 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ↔ suc 𝑢 ⊆ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
| 281 | 274 280 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → suc 𝑢 ⊆ ( ◡ 𝑂 ‘ 𝑥 ) ) |
| 282 | 143 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → suc 𝑢 ∈ dom 𝑂 ) |
| 283 | 37 282 131 | sylancr | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → suc 𝑢 ∈ On ) |
| 284 | ontri1 | ⊢ ( ( suc 𝑢 ∈ On ∧ ( ◡ 𝑂 ‘ 𝑥 ) ∈ On ) → ( suc 𝑢 ⊆ ( ◡ 𝑂 ‘ 𝑥 ) ↔ ¬ ( ◡ 𝑂 ‘ 𝑥 ) ∈ suc 𝑢 ) ) | |
| 285 | 283 276 284 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( suc 𝑢 ⊆ ( ◡ 𝑂 ‘ 𝑥 ) ↔ ¬ ( ◡ 𝑂 ‘ 𝑥 ) ∈ suc 𝑢 ) ) |
| 286 | 281 285 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ¬ ( ◡ 𝑂 ‘ 𝑥 ) ∈ suc 𝑢 ) |
| 287 | isorel | ⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) ) → ( ( ◡ 𝑂 ‘ 𝑥 ) E suc 𝑢 ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) E ( 𝑂 ‘ suc 𝑢 ) ) ) | |
| 288 | 258 266 282 287 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ( ◡ 𝑂 ‘ 𝑥 ) E suc 𝑢 ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) E ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 289 | 243 | epeli | ⊢ ( ( ◡ 𝑂 ‘ 𝑥 ) E suc 𝑢 ↔ ( ◡ 𝑂 ‘ 𝑥 ) ∈ suc 𝑢 ) |
| 290 | 245 | epeli | ⊢ ( ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) E ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
| 291 | 288 289 290 | 3bitr3g | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ( ◡ 𝑂 ‘ 𝑥 ) ∈ suc 𝑢 ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 292 | 262 | eleq1d | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ∈ ( 𝑂 ‘ suc 𝑢 ) ↔ 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 293 | 291 292 | bitrd | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ( ◡ 𝑂 ‘ 𝑥 ) ∈ suc 𝑢 ↔ 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 294 | 286 293 | mtbid | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ¬ 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
| 295 | 294 | expr | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 → ¬ 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 296 | 295 | con2d | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) → ¬ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) |
| 297 | ontri1 | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑂 ‘ 𝑢 ) ∈ On ) → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ ¬ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) | |
| 298 | 225 235 297 | syl2an2r | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ ¬ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) |
| 299 | 296 298 | sylibrd | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) → 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) |
| 300 | 256 299 | impbid | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 301 | 300 | orbi1d | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ↔ ( 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
| 302 | 229 301 | bitr4d | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
| 303 | orcom | ⊢ ( ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ∨ 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ) ↔ ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) | |
| 304 | 302 303 | bitrdi | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) ) |
| 305 | 304 | ifbid | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) → if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 306 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ∅ = ∅ ) | |
| 307 | 221 305 306 | pm2.61ne | ⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 308 | 307 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 309 | 308 | fveq2d | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 310 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 311 | 310 175 | ifex | ⊢ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V |
| 312 | 311 | a1i | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V ) |
| 313 | 312 | ralrimivw | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ∀ 𝑥 ∈ 𝐵 if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V ) |
| 314 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) | |
| 315 | 314 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝐵 if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) Fn 𝐵 ) |
| 316 | 313 315 | syl | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) Fn 𝐵 ) |
| 317 | 175 | a1i | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ∅ ∈ V ) |
| 318 | suppvalfn | ⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) = { 𝑦 ∈ 𝐵 ∣ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ≠ ∅ } ) | |
| 319 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 320 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 321 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) | |
| 322 | nfcv | ⊢ Ⅎ 𝑥 ∅ | |
| 323 | 321 322 | nfne | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ≠ ∅ |
| 324 | nfv | ⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ | |
| 325 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ) | |
| 326 | 325 | neeq1d | ⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ≠ ∅ ↔ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ ) ) |
| 327 | 319 320 323 324 326 | cbvrabw | ⊢ { 𝑦 ∈ 𝐵 ∣ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ≠ ∅ } = { 𝑥 ∈ 𝐵 ∣ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ } |
| 328 | 318 327 | eqtrdi | ⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) = { 𝑥 ∈ 𝐵 ∣ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ } ) |
| 329 | 316 148 317 328 | syl3anc | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) = { 𝑥 ∈ 𝐵 ∣ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ } ) |
| 330 | eqidd | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) | |
| 331 | 311 | a1i | ⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V ) |
| 332 | 330 331 | fvmpt2d | ⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) = if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 333 | 332 | neeq1d | ⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ ↔ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ ) ) |
| 334 | 331 | biantrurd | ⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ ↔ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V ∧ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ ) ) ) |
| 335 | dif1o | ⊢ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) ↔ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V ∧ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ ) ) | |
| 336 | 334 335 | bitr4di | ⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ ↔ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) ) ) |
| 337 | 333 336 | bitrd | ⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ ↔ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) ) ) |
| 338 | 337 | rabbidva | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → { 𝑥 ∈ 𝐵 ∣ ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑥 ) ≠ ∅ } = { 𝑥 ∈ 𝐵 ∣ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) } ) |
| 339 | 329 338 | eqtrd | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) = { 𝑥 ∈ 𝐵 ∣ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) } ) |
| 340 | 311 335 | mpbiran | ⊢ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) ↔ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ ) |
| 341 | ifeq1 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ∅ , ∅ ) ) | |
| 342 | 341 179 | eqtrdi | ⊢ ( ( 𝐹 ‘ 𝑥 ) = ∅ → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = ∅ ) |
| 343 | 342 | necon3i | ⊢ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ → ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) |
| 344 | iffalse | ⊢ ( ¬ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = ∅ ) | |
| 345 | 344 | necon1ai | ⊢ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ → 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) |
| 346 | 343 345 | jca | ⊢ ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ → ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) |
| 347 | 256 | expimpd | ⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) → 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 348 | 346 347 | syl5 | ⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ≠ ∅ → 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 349 | 340 348 | biimtrid | ⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) → 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 350 | 349 | 3impia | ⊢ ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ∧ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) ) → 𝑥 ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
| 351 | 350 | rabssdv | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → { 𝑥 ∈ 𝐵 ∣ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ ( V ∖ 1o ) } ⊆ ( 𝑂 ‘ suc 𝑢 ) ) |
| 352 | 339 351 | eqsstrd | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) supp ∅ ) ⊆ ( 𝑂 ‘ suc 𝑢 ) ) |
| 353 | eqeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ↔ 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ) ) | |
| 354 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ↔ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) | |
| 355 | 353 354 | orbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) ↔ ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) ) ) |
| 356 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 357 | 355 356 | ifbieq1d | ⊢ ( 𝑥 = 𝑦 → if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
| 358 | 357 | cbvmptv | ⊢ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑦 ∈ 𝐵 ↦ if ( ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
| 359 | fveq2 | ⊢ ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) | |
| 360 | 359 | adantl | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 361 | 360 | ifeq1da | ⊢ ( 𝑦 ∈ 𝐵 → if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) = if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) ) |
| 362 | 354 356 | ifbieq1d | ⊢ ( 𝑥 = 𝑦 → if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
| 363 | fvex | ⊢ ( 𝐹 ‘ 𝑦 ) ∈ V | |
| 364 | 363 175 | ifex | ⊢ if ( 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ∈ V |
| 365 | 362 314 364 | fvmpt | ⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) = if ( 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
| 366 | 365 | ifeq2d | ⊢ ( 𝑦 ∈ 𝐵 → if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) = if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) |
| 367 | ifor | ⊢ if ( ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) = if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) | |
| 368 | 366 367 | eqtr4di | ⊢ ( 𝑦 ∈ 𝐵 → if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑦 ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) = if ( ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
| 369 | 361 368 | eqtr3d | ⊢ ( 𝑦 ∈ 𝐵 → if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) = if ( ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
| 370 | 369 | mpteq2ia | ⊢ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐵 ↦ if ( ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑦 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) |
| 371 | 358 370 | eqtr4i | ⊢ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 = ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) , ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ‘ 𝑦 ) ) ) |
| 372 | 1 151 148 186 202 208 352 371 | cantnfp1 | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ 𝑆 ∧ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) ) ) |
| 373 | 372 | simprd | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = ( 𝑂 ‘ suc 𝑢 ) ∨ 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) ) |
| 374 | 309 373 | eqtrd | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) ) |
| 375 | 1 2 3 9 6 10 | cantnfsuc | ⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ ω ) → ( 𝐻 ‘ suc suc 𝑢 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) |
| 376 | 192 375 | syldan | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐻 ‘ suc suc 𝑢 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) |
| 377 | 160 | simp3d | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 378 | 377 | adantr | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 379 | 109 | adantr | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
| 380 | 136 | adantrr | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑢 ∈ On ) |
| 381 | onsssuc | ⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ∧ 𝑢 ∈ On ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ) ) | |
| 382 | 129 380 381 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ) ) |
| 383 | 146 382 | mpbid | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ) |
| 384 | 53 | adantr | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) |
| 385 | isorel | ⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂 ) ) → ( ( ◡ 𝑂 ‘ 𝑋 ) E suc 𝑢 ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) E ( 𝑂 ‘ suc 𝑢 ) ) ) | |
| 386 | 240 384 143 385 | syl12anc | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ◡ 𝑂 ‘ 𝑋 ) E suc 𝑢 ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) E ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 387 | 243 | epeli | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) E suc 𝑢 ↔ ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ) |
| 388 | 245 | epeli | ⊢ ( ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) E ( 𝑂 ‘ suc 𝑢 ) ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
| 389 | 386 387 388 | 3bitr3g | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ↔ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 390 | 383 389 | mpbid | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
| 391 | 379 390 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑋 ∈ ( 𝑂 ‘ suc 𝑢 ) ) |
| 392 | eleq2 | ⊢ ( 𝑤 = ( 𝑂 ‘ suc 𝑢 ) → ( 𝑋 ∈ 𝑤 ↔ 𝑋 ∈ ( 𝑂 ‘ suc 𝑢 ) ) ) | |
| 393 | fveq2 | ⊢ ( 𝑤 = ( 𝑂 ‘ suc 𝑢 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) | |
| 394 | fveq2 | ⊢ ( 𝑤 = ( 𝑂 ‘ suc 𝑢 ) → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) | |
| 395 | 393 394 | eqeq12d | ⊢ ( 𝑤 = ( 𝑂 ‘ suc 𝑢 ) → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ↔ ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) = ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
| 396 | 392 395 | imbi12d | ⊢ ( 𝑤 = ( 𝑂 ‘ suc 𝑢 ) → ( ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ↔ ( 𝑋 ∈ ( 𝑂 ‘ suc 𝑢 ) → ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) = ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ) ) |
| 397 | 396 | rspcv | ⊢ ( ( 𝑂 ‘ suc 𝑢 ) ∈ 𝐵 → ( ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( 𝑋 ∈ ( 𝑂 ‘ suc 𝑢 ) → ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) = ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ) ) |
| 398 | 202 378 391 397 | syl3c | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) = ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 399 | 398 | oveq2d | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) = ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) ) |
| 400 | 399 | oveq1d | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) |
| 401 | 376 400 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( 𝐻 ‘ suc suc 𝑢 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) |
| 402 | 374 401 | eleq12d | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ↔ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) ∈ ( ( ( 𝐴 ↑o ( 𝑂 ‘ suc 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ suc 𝑢 ) ) ) +o ( 𝐻 ‘ suc 𝑢 ) ) ) ) |
| 403 | 214 402 | bitr4d | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
| 404 | 403 | biimpd | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
| 405 | 147 404 | embantd | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
| 406 | 405 | expr | ⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
| 407 | 140 406 | sylbird | ⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
| 408 | fveq2 | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = ( 𝑂 ‘ suc 𝑢 ) ) | |
| 409 | 408 | sseq2d | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) ) ) |
| 410 | 409 | ifbid | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 411 | 410 | mpteq2dv | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 412 | 411 | fveq2d | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 413 | suceq | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → suc ( ◡ 𝑂 ‘ 𝑋 ) = suc suc 𝑢 ) | |
| 414 | 413 | fveq2d | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) = ( 𝐻 ‘ suc suc 𝑢 ) ) |
| 415 | 412 414 | eleq12d | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
| 416 | 115 415 | syl5ibcom | ⊢ ( 𝜑 → ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
| 417 | 416 | adantr | ⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) |
| 418 | 417 | a1dd | ⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
| 419 | 407 418 | jaod | ⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ suc 𝑢 ∨ ( ◡ 𝑂 ‘ 𝑋 ) = suc 𝑢 ) → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
| 420 | 134 419 | sylbid | ⊢ ( ( 𝜑 ∧ suc 𝑢 ∈ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
| 421 | 420 | expimpd | ⊢ ( 𝜑 → ( ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ) → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
| 422 | 421 | com23 | ⊢ ( 𝜑 → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) |
| 423 | 422 | a1i | ⊢ ( 𝑢 ∈ ω → ( 𝜑 → ( ( ( 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑢 ) ) → ( ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ suc 𝑢 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ suc 𝑢 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc suc 𝑢 ) ) ) ) ) |
| 424 | 83 95 107 127 423 | finds2 | ⊢ ( 𝑦 ∈ ω → ( 𝜑 → ( ( 𝑦 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑦 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc 𝑦 ) ) ) ) |
| 425 | 71 424 | vtoclga | ⊢ ( ∪ dom 𝑂 ∈ ω → ( 𝜑 → ( ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) ) ) |
| 426 | 58 425 | mpcom | ⊢ ( 𝜑 → ( ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) ) |
| 427 | 45 55 426 | mp2and | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) |
| 428 | 155 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 429 | eqeq2 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) | |
| 430 | eqeq2 | ⊢ ( ∅ = if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) → ( ( 𝐹 ‘ 𝑥 ) = ∅ ↔ ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) | |
| 431 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 432 | 199 | ffvelcdmi | ⊢ ( ∪ dom 𝑂 ∈ dom 𝑂 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝐺 supp ∅ ) ) |
| 433 | 45 432 | syl | ⊢ ( 𝜑 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝐺 supp ∅ ) ) |
| 434 | 197 433 | sseldd | ⊢ ( 𝜑 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝐵 ) |
| 435 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝐵 ) → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On ) | |
| 436 | 3 434 435 | syl2anc | ⊢ ( 𝜑 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On ) |
| 437 | 436 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On ) |
| 438 | ontri1 | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On ) → ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ↔ ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) | |
| 439 | 224 437 438 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ↔ ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) |
| 440 | 439 | con2bid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ↔ ¬ 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
| 441 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → 𝑥 ∈ 𝐵 ) | |
| 442 | 377 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 443 | eloni | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ On → Ord ( ◡ 𝑂 ‘ 𝑋 ) ) | |
| 444 | 129 443 | syl | ⊢ ( 𝜑 → Ord ( ◡ 𝑂 ‘ 𝑋 ) ) |
| 445 | orduni | ⊢ ( Ord dom 𝑂 → Ord ∪ dom 𝑂 ) | |
| 446 | 37 445 | ax-mp | ⊢ Ord ∪ dom 𝑂 |
| 447 | ordtri1 | ⊢ ( ( Ord ( ◡ 𝑂 ‘ 𝑋 ) ∧ Ord ∪ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ↔ ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) ) | |
| 448 | 444 446 447 | sylancl | ⊢ ( 𝜑 → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ↔ ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
| 449 | 55 448 | mpbid | ⊢ ( 𝜑 → ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) |
| 450 | isorel | ⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) ) → ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) | |
| 451 | 47 45 53 450 | syl12anc | ⊢ ( 𝜑 → ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
| 452 | fvex | ⊢ ( ◡ 𝑂 ‘ 𝑋 ) ∈ V | |
| 453 | 452 | epeli | ⊢ ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) |
| 454 | fvex | ⊢ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ V | |
| 455 | 454 | epeli | ⊢ ( ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
| 456 | 451 453 455 | 3bitr3g | ⊢ ( 𝜑 → ( ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
| 457 | 109 | eleq2d | ⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) ) |
| 458 | 456 457 | bitrd | ⊢ ( 𝜑 → ( ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) ) |
| 459 | 449 458 | mtbid | ⊢ ( 𝜑 → ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) |
| 460 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ On ) | |
| 461 | 3 161 460 | syl2anc | ⊢ ( 𝜑 → 𝑋 ∈ On ) |
| 462 | ontri1 | ⊢ ( ( 𝑋 ∈ On ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On ) → ( 𝑋 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ↔ ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) ) | |
| 463 | 461 436 462 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ↔ ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) ) |
| 464 | 459 463 | mpbird | ⊢ ( 𝜑 → 𝑋 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ) |
| 465 | 464 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → 𝑋 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ) |
| 466 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) | |
| 467 | 224 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → 𝑥 ∈ On ) |
| 468 | ontr2 | ⊢ ( ( 𝑋 ∈ On ∧ 𝑥 ∈ On ) → ( ( 𝑋 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) → 𝑋 ∈ 𝑥 ) ) | |
| 469 | 461 467 468 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ( ( 𝑋 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) → 𝑋 ∈ 𝑥 ) ) |
| 470 | 465 466 469 | mp2and | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → 𝑋 ∈ 𝑥 ) |
| 471 | eleq2 | ⊢ ( 𝑤 = 𝑥 → ( 𝑋 ∈ 𝑤 ↔ 𝑋 ∈ 𝑥 ) ) | |
| 472 | fveq2 | ⊢ ( 𝑤 = 𝑥 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 473 | fveq2 | ⊢ ( 𝑤 = 𝑥 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 474 | 472 473 | eqeq12d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 475 | 471 474 | imbi12d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ↔ ( 𝑋 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 476 | 475 | rspcv | ⊢ ( 𝑥 ∈ 𝐵 → ( ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) → ( 𝑋 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 477 | 441 442 470 476 | syl3c | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 478 | 466 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) |
| 479 | 47 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
| 480 | 45 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ∪ dom 𝑂 ∈ dom 𝑂 ) |
| 481 | 52 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) |
| 482 | ffvelcdm | ⊢ ( ( ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ) | |
| 483 | 481 482 | sylancom | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ) |
| 484 | isorel | ⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ∧ ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 ) ) → ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) | |
| 485 | 479 480 483 484 | syl12anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) |
| 486 | 269 | epeli | ⊢ ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑥 ) ↔ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) |
| 487 | 271 | epeli | ⊢ ( ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
| 488 | 485 486 487 | 3bitr3g | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ) ) |
| 489 | 49 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) |
| 490 | 489 261 | sylancom | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) = 𝑥 ) |
| 491 | 490 | eleq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑥 ) ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) |
| 492 | 488 491 | bitrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) |
| 493 | 478 492 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) |
| 494 | elssuni | ⊢ ( ( ◡ 𝑂 ‘ 𝑥 ) ∈ dom 𝑂 → ( ◡ 𝑂 ‘ 𝑥 ) ⊆ ∪ dom 𝑂 ) | |
| 495 | 483 494 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ◡ 𝑂 ‘ 𝑥 ) ⊆ ∪ dom 𝑂 ) |
| 496 | 37 483 275 | sylancr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ◡ 𝑂 ‘ 𝑥 ) ∈ On ) |
| 497 | 496 277 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → Ord ( ◡ 𝑂 ‘ 𝑥 ) ) |
| 498 | ordtri1 | ⊢ ( ( Ord ( ◡ 𝑂 ‘ 𝑥 ) ∧ Ord ∪ dom 𝑂 ) → ( ( ◡ 𝑂 ‘ 𝑥 ) ⊆ ∪ dom 𝑂 ↔ ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) ) | |
| 499 | 497 446 498 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ( ◡ 𝑂 ‘ 𝑥 ) ⊆ ∪ dom 𝑂 ↔ ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) ) |
| 500 | 495 499 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑥 ) ) |
| 501 | 493 500 | pm2.65da | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ¬ 𝑥 ∈ ( 𝐺 supp ∅ ) ) |
| 502 | 441 501 | eldifd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → 𝑥 ∈ ( 𝐵 ∖ ( 𝐺 supp ∅ ) ) ) |
| 503 | ssidd | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ ( 𝐺 supp ∅ ) ) | |
| 504 | 159 503 3 176 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ( 𝐺 supp ∅ ) ) ) → ( 𝐺 ‘ 𝑥 ) = ∅ ) |
| 505 | 502 504 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) = ∅ ) |
| 506 | 477 505 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) |
| 507 | 506 | expr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 508 | 440 507 | sylbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) ) |
| 509 | 508 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) ) → ( 𝐹 ‘ 𝑥 ) = ∅ ) |
| 510 | 429 430 431 509 | ifbothda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 511 | 510 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 512 | 428 511 | eqtrd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 513 | 512 | fveq2d | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ ( 𝑂 ‘ ∪ dom 𝑂 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 514 | 1 2 3 9 6 10 | cantnfval | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) = ( 𝐻 ‘ dom 𝑂 ) ) |
| 515 | 44 | fveq2d | ⊢ ( 𝜑 → ( 𝐻 ‘ dom 𝑂 ) = ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) |
| 516 | 514 515 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) = ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) |
| 517 | 427 513 516 | 3eltr4d | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) |