This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of ordinal addition. Proposition 8.4 of TakeutiZaring p. 58 and its converse. (Contributed by NM, 5-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaord | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oaordi | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) | |
| 2 | 1 | 3adant1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
| 3 | oveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 +o 𝐴 ) = ( 𝐶 +o 𝐵 ) ) | |
| 4 | 3 | a1i | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 = 𝐵 → ( 𝐶 +o 𝐴 ) = ( 𝐶 +o 𝐵 ) ) ) |
| 5 | oaordi | ⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐴 → ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) | |
| 6 | 5 | 3adant2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐴 → ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) |
| 7 | 4 6 | orim12d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) → ( ( 𝐶 +o 𝐴 ) = ( 𝐶 +o 𝐵 ) ∨ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) ) |
| 8 | 7 | con3d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ¬ ( ( 𝐶 +o 𝐴 ) = ( 𝐶 +o 𝐵 ) ∨ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) → ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
| 9 | df-3an | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ↔ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ) | |
| 10 | ancom | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) ↔ ( 𝐶 ∈ On ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ) | |
| 11 | anandi | ⊢ ( ( 𝐶 ∈ On ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) ↔ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐵 ∈ On ) ) ) | |
| 12 | 9 10 11 | 3bitri | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ↔ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐵 ∈ On ) ) ) |
| 13 | oacl | ⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐶 +o 𝐴 ) ∈ On ) | |
| 14 | eloni | ⊢ ( ( 𝐶 +o 𝐴 ) ∈ On → Ord ( 𝐶 +o 𝐴 ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) → Ord ( 𝐶 +o 𝐴 ) ) |
| 16 | oacl | ⊢ ( ( 𝐶 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐶 +o 𝐵 ) ∈ On ) | |
| 17 | eloni | ⊢ ( ( 𝐶 +o 𝐵 ) ∈ On → Ord ( 𝐶 +o 𝐵 ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝐶 ∈ On ∧ 𝐵 ∈ On ) → Ord ( 𝐶 +o 𝐵 ) ) |
| 19 | 15 18 | anim12i | ⊢ ( ( ( 𝐶 ∈ On ∧ 𝐴 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐵 ∈ On ) ) → ( Ord ( 𝐶 +o 𝐴 ) ∧ Ord ( 𝐶 +o 𝐵 ) ) ) |
| 20 | 12 19 | sylbi | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( Ord ( 𝐶 +o 𝐴 ) ∧ Ord ( 𝐶 +o 𝐵 ) ) ) |
| 21 | ordtri2 | ⊢ ( ( Ord ( 𝐶 +o 𝐴 ) ∧ Ord ( 𝐶 +o 𝐵 ) ) → ( ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ↔ ¬ ( ( 𝐶 +o 𝐴 ) = ( 𝐶 +o 𝐵 ) ∨ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ↔ ¬ ( ( 𝐶 +o 𝐴 ) = ( 𝐶 +o 𝐵 ) ∨ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) ) |
| 23 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 24 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 25 | 23 24 | anim12i | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( Ord 𝐴 ∧ Ord 𝐵 ) ) |
| 26 | 25 | 3adant3 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( Ord 𝐴 ∧ Ord 𝐵 ) ) |
| 27 | ordtri2 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
| 29 | 8 22 28 | 3imtr4d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 30 | 2 29 | impbid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |