This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order type of the well-order R on A is an ordinal. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 23-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oicl.1 | ⊢ 𝐹 = OrdIso ( 𝑅 , 𝐴 ) | |
| Assertion | oion | ⊢ ( 𝐴 ∈ 𝑉 → dom 𝐹 ∈ On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oicl.1 | ⊢ 𝐹 = OrdIso ( 𝑅 , 𝐴 ) | |
| 2 | 1 | oicl | ⊢ Ord dom 𝐹 |
| 3 | 1 | oiexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐹 ∈ V ) |
| 4 | dmexg | ⊢ ( 𝐹 ∈ V → dom 𝐹 ∈ V ) | |
| 5 | elong | ⊢ ( dom 𝐹 ∈ V → ( dom 𝐹 ∈ On ↔ Ord dom 𝐹 ) ) | |
| 6 | 3 4 5 | 3syl | ⊢ ( 𝐴 ∈ 𝑉 → ( dom 𝐹 ∈ On ↔ Ord dom 𝐹 ) ) |
| 7 | 2 6 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → dom 𝐹 ∈ On ) |