This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Syllogism inference. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylanbrc.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| sylanbrc.2 | ⊢ ( 𝜑 → 𝜒 ) | ||
| sylanbrc.3 | ⊢ ( 𝜃 ↔ ( 𝜓 ∧ 𝜒 ) ) | ||
| Assertion | sylanbrc | ⊢ ( 𝜑 → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanbrc.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | sylanbrc.2 | ⊢ ( 𝜑 → 𝜒 ) | |
| 3 | sylanbrc.3 | ⊢ ( 𝜃 ↔ ( 𝜓 ∧ 𝜒 ) ) | |
| 4 | 1 2 | jca | ⊢ ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) |
| 5 | 4 3 | sylibr | ⊢ ( 𝜑 → 𝜃 ) |