This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basic properties of the order isomorphism G used later. The support of an F e. S is a finite subset of A , so it is well-ordered by _E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| cantnfcl.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | ||
| cantnfcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | ||
| Assertion | cantnfcl | ⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | cantnfcl.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | |
| 5 | cantnfcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | |
| 6 | suppssdm | ⊢ ( 𝐹 supp ∅ ) ⊆ dom 𝐹 | |
| 7 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) ) |
| 8 | 5 7 | mpbid | ⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) |
| 9 | 8 | simpld | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 10 | 6 9 | fssdm | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐵 ) |
| 11 | onss | ⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) | |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ On ) |
| 13 | 10 12 | sstrd | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ On ) |
| 14 | epweon | ⊢ E We On | |
| 15 | wess | ⊢ ( ( 𝐹 supp ∅ ) ⊆ On → ( E We On → E We ( 𝐹 supp ∅ ) ) ) | |
| 16 | 13 14 15 | mpisyl | ⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
| 17 | ovexd | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) | |
| 18 | 4 | oion | ⊢ ( ( 𝐹 supp ∅ ) ∈ V → dom 𝐺 ∈ On ) |
| 19 | 17 18 | syl | ⊢ ( 𝜑 → dom 𝐺 ∈ On ) |
| 20 | 8 | simprd | ⊢ ( 𝜑 → 𝐹 finSupp ∅ ) |
| 21 | 20 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ Fin ) |
| 22 | 4 | oien | ⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → dom 𝐺 ≈ ( 𝐹 supp ∅ ) ) |
| 23 | 17 16 22 | syl2anc | ⊢ ( 𝜑 → dom 𝐺 ≈ ( 𝐹 supp ∅ ) ) |
| 24 | enfii | ⊢ ( ( ( 𝐹 supp ∅ ) ∈ Fin ∧ dom 𝐺 ≈ ( 𝐹 supp ∅ ) ) → dom 𝐺 ∈ Fin ) | |
| 25 | 21 23 24 | syl2anc | ⊢ ( 𝜑 → dom 𝐺 ∈ Fin ) |
| 26 | 19 25 | elind | ⊢ ( 𝜑 → dom 𝐺 ∈ ( On ∩ Fin ) ) |
| 27 | onfin2 | ⊢ ω = ( On ∩ Fin ) | |
| 28 | 26 27 | eleqtrrdi | ⊢ ( 𝜑 → dom 𝐺 ∈ ω ) |
| 29 | 16 28 | jca | ⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) ) |