This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A syllogism deduction with conjoined antecedents. (Contributed by NM, 24-Feb-2005) (Proof shortened by Wolf Lammen, 6-Apr-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syldan.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| syldan.2 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) | ||
| Assertion | syldan | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syldan.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| 2 | syldan.2 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) | |
| 3 | simpl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) | |
| 4 | 3 1 2 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) |