This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order type of the well-order R on A is an ordinal. (Contributed by Mario Carneiro, 23-May-2015) (Revised by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oicl.1 | ⊢ 𝐹 = OrdIso ( 𝑅 , 𝐴 ) | |
| Assertion | oicl | ⊢ Ord dom 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oicl.1 | ⊢ 𝐹 = OrdIso ( 𝑅 , 𝐴 ) | |
| 2 | eqid | ⊢ recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) = recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) | |
| 3 | eqid | ⊢ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | |
| 4 | eqid | ⊢ ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) | |
| 5 | 2 3 4 | ordtypecbv | ⊢ recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) ) = recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) |
| 6 | eqid | ⊢ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } | |
| 7 | simpl | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 We 𝐴 ) | |
| 8 | simpr | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Se 𝐴 ) | |
| 9 | 5 3 4 6 1 7 8 | ordtypelem5 | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( Ord dom 𝐹 ∧ 𝐹 : dom 𝐹 ⟶ 𝐴 ) ) |
| 10 | 9 | simpld | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → Ord dom 𝐹 ) |
| 11 | ord0 | ⊢ Ord ∅ | |
| 12 | 1 | oi0 | ⊢ ( ¬ ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 = ∅ ) |
| 13 | 12 | dmeqd | ⊢ ( ¬ ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → dom 𝐹 = dom ∅ ) |
| 14 | dm0 | ⊢ dom ∅ = ∅ | |
| 15 | 13 14 | eqtrdi | ⊢ ( ¬ ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → dom 𝐹 = ∅ ) |
| 16 | ordeq | ⊢ ( dom 𝐹 = ∅ → ( Ord dom 𝐹 ↔ Ord ∅ ) ) | |
| 17 | 15 16 | syl | ⊢ ( ¬ ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( Ord dom 𝐹 ↔ Ord ∅ ) ) |
| 18 | 11 17 | mpbiri | ⊢ ( ¬ ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → Ord dom 𝐹 ) |
| 19 | 10 18 | pm2.61i | ⊢ Ord dom 𝐹 |