This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for ordinal exponentiation. Remark 2.8 of Schloeder p. 5. (Contributed by NM, 1-Jan-2005) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝐵 = ∅ → ( ∅ ↑o 𝐵 ) = ( ∅ ↑o ∅ ) ) | |
| 2 | oe0m0 | ⊢ ( ∅ ↑o ∅ ) = 1o | |
| 3 | 1on | ⊢ 1o ∈ On | |
| 4 | 2 3 | eqeltri | ⊢ ( ∅ ↑o ∅ ) ∈ On |
| 5 | 1 4 | eqeltrdi | ⊢ ( 𝐵 = ∅ → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐵 ∈ On ∧ 𝐵 = ∅ ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 7 | oe0m1 | ⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ ( ∅ ↑o 𝐵 ) = ∅ ) ) | |
| 8 | 7 | biimpa | ⊢ ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) = ∅ ) |
| 9 | 0elon | ⊢ ∅ ∈ On | |
| 10 | 8 9 | eqeltrdi | ⊢ ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 11 | 10 | adantll | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 12 | 6 11 | oe0lem | ⊢ ( ( 𝐵 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 13 | 12 | anidms | ⊢ ( 𝐵 ∈ On → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 14 | oveq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐵 ) = ( ∅ ↑o 𝐵 ) ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝐴 = ∅ → ( ( 𝐴 ↑o 𝐵 ) ∈ On ↔ ( ∅ ↑o 𝐵 ) ∈ On ) ) |
| 16 | 13 15 | imbitrrid | ⊢ ( 𝐴 = ∅ → ( 𝐵 ∈ On → ( 𝐴 ↑o 𝐵 ) ∈ On ) ) |
| 17 | 16 | impcom | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 18 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o ∅ ) ) | |
| 19 | 18 | eleq1d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ↑o 𝑥 ) ∈ On ↔ ( 𝐴 ↑o ∅ ) ∈ On ) ) |
| 20 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝑦 ) ) | |
| 21 | 20 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ↑o 𝑥 ) ∈ On ↔ ( 𝐴 ↑o 𝑦 ) ∈ On ) ) |
| 22 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o suc 𝑦 ) ) | |
| 23 | 22 | eleq1d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ↑o 𝑥 ) ∈ On ↔ ( 𝐴 ↑o suc 𝑦 ) ∈ On ) ) |
| 24 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ↑o 𝑥 ) = ( 𝐴 ↑o 𝐵 ) ) | |
| 25 | 24 | eleq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ↑o 𝑥 ) ∈ On ↔ ( 𝐴 ↑o 𝐵 ) ∈ On ) ) |
| 26 | oe0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) | |
| 27 | 26 3 | eqeltrdi | ⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) ∈ On ) |
| 28 | 27 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o ∅ ) ∈ On ) |
| 29 | omcl | ⊢ ( ( ( 𝐴 ↑o 𝑦 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ∈ On ) | |
| 30 | 29 | expcom | ⊢ ( 𝐴 ∈ On → ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ∈ On ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ∈ On ) ) |
| 32 | oesuc | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o suc 𝑦 ) = ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ) | |
| 33 | 32 | eleq1d | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ↑o suc 𝑦 ) ∈ On ↔ ( ( 𝐴 ↑o 𝑦 ) ·o 𝐴 ) ∈ On ) ) |
| 34 | 31 33 | sylibrd | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( 𝐴 ↑o suc 𝑦 ) ∈ On ) ) |
| 35 | 34 | expcom | ⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ On → ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( 𝐴 ↑o suc 𝑦 ) ∈ On ) ) ) |
| 36 | 35 | adantrd | ⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ↑o 𝑦 ) ∈ On → ( 𝐴 ↑o suc 𝑦 ) ∈ On ) ) ) |
| 37 | vex | ⊢ 𝑥 ∈ V | |
| 38 | iunon | ⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On ) → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On ) | |
| 39 | 37 38 | mpan | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On → ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On ) |
| 40 | oelim | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) | |
| 41 | 37 40 | mpanlr1 | ⊢ ( ( ( 𝐴 ∈ On ∧ Lim 𝑥 ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 42 | 41 | anasss | ⊢ ( ( 𝐴 ∈ On ∧ ( Lim 𝑥 ∧ ∅ ∈ 𝐴 ) ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 43 | 42 | an12s | ⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( 𝐴 ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ) |
| 44 | 43 | eleq1d | ⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( ( 𝐴 ↑o 𝑥 ) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On ) ) |
| 45 | 39 44 | imbitrrid | ⊢ ( ( Lim 𝑥 ∧ ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On → ( 𝐴 ↑o 𝑥 ) ∈ On ) ) |
| 46 | 45 | ex | ⊢ ( Lim 𝑥 → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ↑o 𝑦 ) ∈ On → ( 𝐴 ↑o 𝑥 ) ∈ On ) ) ) |
| 47 | 19 21 23 25 28 36 46 | tfinds3 | ⊢ ( 𝐵 ∈ On → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) ) |
| 48 | 47 | expd | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 → ( 𝐴 ↑o 𝐵 ) ∈ On ) ) ) |
| 49 | 48 | com12 | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ On → ( ∅ ∈ 𝐴 → ( 𝐴 ↑o 𝐵 ) ∈ On ) ) ) |
| 50 | 49 | imp31 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 51 | 17 50 | oe0lem | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |