This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Null Set Axiom of ZF set theory: the empty set exists. Corollary 5.16 of TakeutiZaring p. 20. For the unabbreviated version, see ax-nul . (Contributed by NM, 21-Jun-1993) (Proof shortened by Andrew Salmon, 9-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0ex | ⊢ ∅ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-nul | ⊢ ∃ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 | |
| 2 | eq0 | ⊢ ( 𝑥 = ∅ ↔ ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) | |
| 3 | 2 | exbii | ⊢ ( ∃ 𝑥 𝑥 = ∅ ↔ ∃ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) |
| 4 | 1 3 | mpbir | ⊢ ∃ 𝑥 𝑥 = ∅ |
| 5 | 4 | issetri | ⊢ ∅ ∈ V |