This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl12anc.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| syl12anc.2 | ⊢ ( 𝜑 → 𝜒 ) | ||
| syl12anc.3 | ⊢ ( 𝜑 → 𝜃 ) | ||
| syl22anc.4 | ⊢ ( 𝜑 → 𝜏 ) | ||
| syl22anc.5 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) → 𝜂 ) | ||
| Assertion | syl22anc | ⊢ ( 𝜑 → 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl12anc.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | syl12anc.2 | ⊢ ( 𝜑 → 𝜒 ) | |
| 3 | syl12anc.3 | ⊢ ( 𝜑 → 𝜃 ) | |
| 4 | syl22anc.4 | ⊢ ( 𝜑 → 𝜏 ) | |
| 5 | syl22anc.5 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) → 𝜂 ) | |
| 6 | 1 2 | jca | ⊢ ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) |
| 7 | 6 3 4 5 | syl12anc | ⊢ ( 𝜑 → 𝜂 ) |