This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnf . (Contributed by Mario Carneiro, 4-Jun-2015) (Revised by AV, 2-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | ||
| oemapval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | ||
| oemapval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | ||
| oemapvali.r | ⊢ ( 𝜑 → 𝐹 𝑇 𝐺 ) | ||
| oemapvali.x | ⊢ 𝑋 = ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } | ||
| cantnflem1.o | ⊢ 𝑂 = OrdIso ( E , ( 𝐺 supp ∅ ) ) | ||
| cantnflem1.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑘 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | ||
| Assertion | cantnflem1d | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 5 | oemapval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | |
| 6 | oemapval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | |
| 7 | oemapvali.r | ⊢ ( 𝜑 → 𝐹 𝑇 𝐺 ) | |
| 8 | oemapvali.x | ⊢ 𝑋 = ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } | |
| 9 | cantnflem1.o | ⊢ 𝑂 = OrdIso ( E , ( 𝐺 supp ∅ ) ) | |
| 10 | cantnflem1.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑘 ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 11 | 1 2 3 4 5 6 7 8 | oemapvali | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 12 | 11 | simp1d | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 13 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ On ) | |
| 14 | 3 12 13 | syl2anc | ⊢ ( 𝜑 → 𝑋 ∈ On ) |
| 15 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ On ) → ( 𝐴 ↑o 𝑋 ) ∈ On ) | |
| 16 | 2 14 15 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
| 17 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
| 18 | 6 17 | mpbid | ⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
| 19 | 18 | simpld | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 20 | 19 12 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ 𝐴 ) |
| 21 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ 𝑋 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑋 ) ∈ On ) | |
| 22 | 2 20 21 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ On ) |
| 23 | omcl | ⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ ( 𝐺 ‘ 𝑋 ) ∈ On ) → ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ∈ On ) | |
| 24 | 16 22 23 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ∈ On ) |
| 25 | ovexd | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ∈ V ) | |
| 26 | 1 2 3 9 6 | cantnfcl | ⊢ ( 𝜑 → ( E We ( 𝐺 supp ∅ ) ∧ dom 𝑂 ∈ ω ) ) |
| 27 | 26 | simpld | ⊢ ( 𝜑 → E We ( 𝐺 supp ∅ ) ) |
| 28 | 9 | oiiso | ⊢ ( ( ( 𝐺 supp ∅ ) ∈ V ∧ E We ( 𝐺 supp ∅ ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
| 29 | 25 27 28 | syl2anc | ⊢ ( 𝜑 → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
| 30 | isof1o | ⊢ ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐺 supp ∅ ) ) → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) | |
| 31 | 29 30 | syl | ⊢ ( 𝜑 → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ) |
| 32 | f1ocnv | ⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) → ◡ 𝑂 : ( 𝐺 supp ∅ ) –1-1-onto→ dom 𝑂 ) | |
| 33 | f1of | ⊢ ( ◡ 𝑂 : ( 𝐺 supp ∅ ) –1-1-onto→ dom 𝑂 → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) | |
| 34 | 31 32 33 | 3syl | ⊢ ( 𝜑 → ◡ 𝑂 : ( 𝐺 supp ∅ ) ⟶ dom 𝑂 ) |
| 35 | 1 2 3 4 5 6 7 8 | cantnflem1a | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 supp ∅ ) ) |
| 36 | 34 35 | ffvelcdmd | ⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) |
| 37 | 26 | simprd | ⊢ ( 𝜑 → dom 𝑂 ∈ ω ) |
| 38 | elnn | ⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ∧ dom 𝑂 ∈ ω ) → ( ◡ 𝑂 ‘ 𝑋 ) ∈ ω ) | |
| 39 | 36 37 38 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ∈ ω ) |
| 40 | 10 | cantnfvalf | ⊢ 𝐻 : ω ⟶ On |
| 41 | 40 | ffvelcdmi | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ ω → ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ On ) |
| 42 | 39 41 | syl | ⊢ ( 𝜑 → ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ On ) |
| 43 | oaword1 | ⊢ ( ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ∈ On ∧ ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ On ) → ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ⊆ ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) +o ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) | |
| 44 | 24 42 43 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ⊆ ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) +o ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
| 45 | 1 2 3 9 6 10 | cantnfsuc | ⊢ ( ( 𝜑 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ∈ ω ) → ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) +o ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
| 46 | 39 45 | mpdan | ⊢ ( 𝜑 → ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) +o ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
| 47 | f1ocnvfv2 | ⊢ ( ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐺 supp ∅ ) ∧ 𝑋 ∈ ( 𝐺 supp ∅ ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) | |
| 48 | 31 35 47 | syl2anc | ⊢ ( 𝜑 → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
| 49 | 48 | oveq2d | ⊢ ( 𝜑 → ( 𝐴 ↑o ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) = ( 𝐴 ↑o 𝑋 ) ) |
| 50 | 48 | fveq2d | ⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) = ( 𝐺 ‘ 𝑋 ) ) |
| 51 | 49 50 | oveq12d | ⊢ ( 𝜑 → ( ( 𝐴 ↑o ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) = ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ) |
| 52 | 51 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑o ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ·o ( 𝐺 ‘ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) +o ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) +o ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
| 53 | 46 52 | eqtrd | ⊢ ( 𝜑 → ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) +o ( 𝐻 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
| 54 | 44 53 | sseqtrrd | ⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ⊆ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
| 55 | onss | ⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) | |
| 56 | 3 55 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ On ) |
| 57 | 56 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
| 58 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑋 ∈ On ) |
| 59 | onsseleq | ⊢ ( ( 𝑥 ∈ On ∧ 𝑋 ∈ On ) → ( 𝑥 ⊆ 𝑋 ↔ ( 𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋 ) ) ) | |
| 60 | 57 58 59 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ⊆ 𝑋 ↔ ( 𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋 ) ) ) |
| 61 | orcom | ⊢ ( ( 𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋 ) ↔ ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) ) | |
| 62 | 60 61 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ⊆ 𝑋 ↔ ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) ) ) |
| 63 | 62 | ifbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 64 | 63 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 65 | 64 | fveq2d | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ) |
| 66 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) ) |
| 67 | 5 66 | mpbid | ⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) |
| 68 | 67 | simpld | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 69 | 68 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐴 ) |
| 70 | 20 | ne0d | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 71 | on0eln0 | ⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 72 | 2 71 | syl | ⊢ ( 𝜑 → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 73 | 70 72 | mpbird | ⊢ ( 𝜑 → ∅ ∈ 𝐴 ) |
| 74 | 73 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ∅ ∈ 𝐴 ) |
| 75 | 69 74 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ∈ 𝐴 ) |
| 76 | 75 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) : 𝐵 ⟶ 𝐴 ) |
| 77 | 0ex | ⊢ ∅ ∈ V | |
| 78 | 77 | a1i | ⊢ ( 𝜑 → ∅ ∈ V ) |
| 79 | 67 | simprd | ⊢ ( 𝜑 → 𝐹 finSupp ∅ ) |
| 80 | 68 3 78 79 | fsuppmptif | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) finSupp ∅ ) |
| 81 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ∈ 𝑆 ↔ ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) : 𝐵 ⟶ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) finSupp ∅ ) ) ) |
| 82 | 76 80 81 | mpbir2and | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ∈ 𝑆 ) |
| 83 | 68 12 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ 𝐴 ) |
| 84 | eldifn | ⊢ ( 𝑦 ∈ ( 𝐵 ∖ 𝑋 ) → ¬ 𝑦 ∈ 𝑋 ) | |
| 85 | 84 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑋 ) ) → ¬ 𝑦 ∈ 𝑋 ) |
| 86 | 85 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑋 ) ) → if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) = ∅ ) |
| 87 | 86 3 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) supp ∅ ) ⊆ 𝑋 ) |
| 88 | ifor | ⊢ if ( ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 = 𝑋 , ( 𝐹 ‘ 𝑥 ) , if ( 𝑥 ∈ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) | |
| 89 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 90 | 89 | adantl | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑋 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 91 | 90 | ifeq1da | ⊢ ( 𝑥 ∈ 𝐵 → if ( 𝑥 = 𝑋 , ( 𝐹 ‘ 𝑥 ) , ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ‘ 𝑥 ) ) = if ( 𝑥 = 𝑋 , ( 𝐹 ‘ 𝑋 ) , ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ‘ 𝑥 ) ) ) |
| 92 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝑋 ↔ 𝑥 ∈ 𝑋 ) ) | |
| 93 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 94 | 92 93 | ifbieq1d | ⊢ ( 𝑦 = 𝑥 → if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) = if ( 𝑥 ∈ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 95 | eqid | ⊢ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) = ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) | |
| 96 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 97 | 96 77 | ifex | ⊢ if ( 𝑥 ∈ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ∈ V |
| 98 | 94 95 97 | fvmpt | ⊢ ( 𝑥 ∈ 𝐵 → ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) |
| 99 | 98 | ifeq2d | ⊢ ( 𝑥 ∈ 𝐵 → if ( 𝑥 = 𝑋 , ( 𝐹 ‘ 𝑥 ) , ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ‘ 𝑥 ) ) = if ( 𝑥 = 𝑋 , ( 𝐹 ‘ 𝑥 ) , if ( 𝑥 ∈ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 100 | 91 99 | eqtr3d | ⊢ ( 𝑥 ∈ 𝐵 → if ( 𝑥 = 𝑋 , ( 𝐹 ‘ 𝑋 ) , ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ‘ 𝑥 ) ) = if ( 𝑥 = 𝑋 , ( 𝐹 ‘ 𝑥 ) , if ( 𝑥 ∈ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) |
| 101 | 88 100 | eqtr4id | ⊢ ( 𝑥 ∈ 𝐵 → if ( ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) = if ( 𝑥 = 𝑋 , ( 𝐹 ‘ 𝑋 ) , ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ‘ 𝑥 ) ) ) |
| 102 | 101 | mpteq2ia | ⊢ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 = 𝑋 , ( 𝐹 ‘ 𝑋 ) , ( ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ‘ 𝑥 ) ) ) |
| 103 | 1 2 3 82 12 83 87 102 | cantnfp1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ∈ 𝑆 ∧ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ) ) ) |
| 104 | 103 | simprd | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋 ) , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ) ) |
| 105 | 65 104 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ) ) |
| 106 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) ∈ On ) | |
| 107 | 2 83 106 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ On ) |
| 108 | omsuc | ⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ ( 𝐹 ‘ 𝑋 ) ∈ On ) → ( ( 𝐴 ↑o 𝑋 ) ·o suc ( 𝐹 ‘ 𝑋 ) ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( 𝐴 ↑o 𝑋 ) ) ) | |
| 109 | 16 107 108 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o suc ( 𝐹 ‘ 𝑋 ) ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( 𝐴 ↑o 𝑋 ) ) ) |
| 110 | eloni | ⊢ ( ( 𝐺 ‘ 𝑋 ) ∈ On → Ord ( 𝐺 ‘ 𝑋 ) ) | |
| 111 | 22 110 | syl | ⊢ ( 𝜑 → Ord ( 𝐺 ‘ 𝑋 ) ) |
| 112 | 11 | simp2d | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ) |
| 113 | ordsucss | ⊢ ( Ord ( 𝐺 ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) → suc ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐺 ‘ 𝑋 ) ) ) | |
| 114 | 111 112 113 | sylc | ⊢ ( 𝜑 → suc ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐺 ‘ 𝑋 ) ) |
| 115 | onsuc | ⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ On → suc ( 𝐹 ‘ 𝑋 ) ∈ On ) | |
| 116 | 107 115 | syl | ⊢ ( 𝜑 → suc ( 𝐹 ‘ 𝑋 ) ∈ On ) |
| 117 | omwordi | ⊢ ( ( suc ( 𝐹 ‘ 𝑋 ) ∈ On ∧ ( 𝐺 ‘ 𝑋 ) ∈ On ∧ ( 𝐴 ↑o 𝑋 ) ∈ On ) → ( suc ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐺 ‘ 𝑋 ) → ( ( 𝐴 ↑o 𝑋 ) ·o suc ( 𝐹 ‘ 𝑋 ) ) ⊆ ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ) ) | |
| 118 | 116 22 16 117 | syl3anc | ⊢ ( 𝜑 → ( suc ( 𝐹 ‘ 𝑋 ) ⊆ ( 𝐺 ‘ 𝑋 ) → ( ( 𝐴 ↑o 𝑋 ) ·o suc ( 𝐹 ‘ 𝑋 ) ) ⊆ ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ) ) |
| 119 | 114 118 | mpd | ⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o suc ( 𝐹 ‘ 𝑋 ) ) ⊆ ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ) |
| 120 | 109 119 | eqsstrrd | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( 𝐴 ↑o 𝑋 ) ) ⊆ ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ) |
| 121 | 1 2 3 82 73 14 87 | cantnflt2 | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ∈ ( 𝐴 ↑o 𝑋 ) ) |
| 122 | onelon | ⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ∈ ( 𝐴 ↑o 𝑋 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ∈ On ) | |
| 123 | 16 121 122 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ∈ On ) |
| 124 | omcl | ⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ ( 𝐹 ‘ 𝑋 ) ∈ On ) → ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) ∈ On ) | |
| 125 | 16 107 124 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) ∈ On ) |
| 126 | oaord | ⊢ ( ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ∈ On ∧ ( 𝐴 ↑o 𝑋 ) ∈ On ∧ ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) ∈ On ) → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ∈ ( 𝐴 ↑o 𝑋 ) ↔ ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ) ∈ ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( 𝐴 ↑o 𝑋 ) ) ) ) | |
| 127 | 123 16 125 126 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ∈ ( 𝐴 ↑o 𝑋 ) ↔ ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ) ∈ ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( 𝐴 ↑o 𝑋 ) ) ) ) |
| 128 | 121 127 | mpbid | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ) ∈ ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( 𝐴 ↑o 𝑋 ) ) ) |
| 129 | 120 128 | sseldd | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐹 ‘ 𝑋 ) ) +o ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑦 ∈ 𝐵 ↦ if ( 𝑦 ∈ 𝑋 , ( 𝐹 ‘ 𝑦 ) , ∅ ) ) ) ) ∈ ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ) |
| 130 | 105 129 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( ( 𝐴 ↑o 𝑋 ) ·o ( 𝐺 ‘ 𝑋 ) ) ) |
| 131 | 54 130 | sseldd | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ⊆ 𝑋 , ( 𝐹 ‘ 𝑥 ) , ∅ ) ) ) ∈ ( 𝐻 ‘ suc ( ◡ 𝑂 ‘ 𝑋 ) ) ) |