This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the support of a function is a subset of the support of a finitely supported function, the function is finitely supported. (Contributed by AV, 2-Jul-2019) (Proof shortened by AV, 15-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsuppsssupp | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ∧ ( 𝐹 finSupp 𝑍 ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) ) → 𝐺 finSupp 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ∧ ( 𝐹 finSupp 𝑍 ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) ) → 𝐺 ∈ 𝑉 ) | |
| 2 | simplr | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ∧ ( 𝐹 finSupp 𝑍 ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) ) → Fun 𝐺 ) | |
| 3 | relfsupp | ⊢ Rel finSupp | |
| 4 | 3 | brrelex2i | ⊢ ( 𝐹 finSupp 𝑍 → 𝑍 ∈ V ) |
| 5 | 4 | ad2antrl | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ∧ ( 𝐹 finSupp 𝑍 ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) ) → 𝑍 ∈ V ) |
| 6 | id | ⊢ ( 𝐹 finSupp 𝑍 → 𝐹 finSupp 𝑍 ) | |
| 7 | 6 | fsuppimpd | ⊢ ( 𝐹 finSupp 𝑍 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
| 8 | 7 | anim1i | ⊢ ( ( 𝐹 finSupp 𝑍 ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) → ( ( 𝐹 supp 𝑍 ) ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) ) |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ∧ ( 𝐹 finSupp 𝑍 ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) ) → ( ( 𝐹 supp 𝑍 ) ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) ) |
| 10 | suppssfifsupp | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ V ) ∧ ( ( 𝐹 supp 𝑍 ) ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) ) → 𝐺 finSupp 𝑍 ) | |
| 11 | 1 2 5 9 10 | syl31anc | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ∧ ( 𝐹 finSupp 𝑍 ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) ) → 𝐺 finSupp 𝑍 ) |