This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 3-Jan-1993) (Proof shortened by Wolf Lammen, 13-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bitri.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| bitri.2 | ⊢ ( 𝜓 ↔ 𝜒 ) | ||
| Assertion | bitri | ⊢ ( 𝜑 ↔ 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitri.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | bitri.2 | ⊢ ( 𝜓 ↔ 𝜒 ) | |
| 3 | 1 2 | sylbb | ⊢ ( 𝜑 → 𝜒 ) |
| 4 | 1 2 | sylbbr | ⊢ ( 𝜒 → 𝜑 ) |
| 5 | 3 4 | impbii | ⊢ ( 𝜑 ↔ 𝜒 ) |