This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isorel | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 𝑅 𝐷 ↔ ( 𝐻 ‘ 𝐶 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 2 | 1 | simprbi | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 3 | breq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 𝑅 𝑦 ↔ 𝐶 𝑅 𝑦 ) ) | |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝐶 ) ) | |
| 5 | 4 | breq1d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝐶 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 6 | 3 5 | bibi12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝐶 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝐶 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 7 | breq2 | ⊢ ( 𝑦 = 𝐷 → ( 𝐶 𝑅 𝑦 ↔ 𝐶 𝑅 𝐷 ) ) | |
| 8 | fveq2 | ⊢ ( 𝑦 = 𝐷 → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 𝐷 ) ) | |
| 9 | 8 | breq2d | ⊢ ( 𝑦 = 𝐷 → ( ( 𝐻 ‘ 𝐶 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝐶 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
| 10 | 7 9 | bibi12d | ⊢ ( 𝑦 = 𝐷 → ( ( 𝐶 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝐶 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝐶 𝑅 𝐷 ↔ ( 𝐻 ‘ 𝐶 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
| 11 | 6 10 | rspc2v | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) → ( 𝐶 𝑅 𝐷 ↔ ( 𝐻 ‘ 𝐶 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
| 12 | 2 11 | mpan9 | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝐶 𝑅 𝐷 ↔ ( 𝐻 ‘ 𝐶 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |