This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A trichotomy law for ordinals. (Contributed by NM, 25-Mar-1995) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtri1 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsseleq | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) | |
| 2 | ordn2lp | ⊢ ( Ord 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) ) | |
| 3 | imnan | ⊢ ( ( 𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴 ) ↔ ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) ) | |
| 4 | 2 3 | sylibr | ⊢ ( Ord 𝐴 → ( 𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴 ) ) |
| 5 | ordirr | ⊢ ( Ord 𝐵 → ¬ 𝐵 ∈ 𝐵 ) | |
| 6 | eleq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐵 ∈ 𝐴 ↔ 𝐵 ∈ 𝐵 ) ) | |
| 7 | 6 | notbid | ⊢ ( 𝐴 = 𝐵 → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ∈ 𝐵 ) ) |
| 8 | 5 7 | syl5ibrcom | ⊢ ( Ord 𝐵 → ( 𝐴 = 𝐵 → ¬ 𝐵 ∈ 𝐴 ) ) |
| 9 | 4 8 | jaao | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) → ¬ 𝐵 ∈ 𝐴 ) ) |
| 10 | ordtri3or | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) | |
| 11 | df-3or | ⊢ ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ↔ ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ 𝐵 ∈ 𝐴 ) ) | |
| 12 | 10 11 | sylib | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ 𝐵 ∈ 𝐴 ) ) |
| 13 | 12 | orcomd | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐵 ∈ 𝐴 ∨ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| 14 | 13 | ord | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ 𝐵 ∈ 𝐴 → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| 15 | 9 14 | impbid | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
| 16 | 1 15 | bitrd | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |