This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law for ordinal numbers. Exercise 3 of TakeutiZaring p. 40. (Contributed by NM, 6-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ontr2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 2 | eloni | ⊢ ( 𝐶 ∈ On → Ord 𝐶 ) | |
| 3 | ordtr2 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐶 ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |