This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The CNF function is a function from finitely supported functions from B to A , to the ordinal exponential A ^o B . (Contributed by Mario Carneiro, 28-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| Assertion | cantnff | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) : 𝑆 ⟶ ( 𝐴 ↑o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | fvex | ⊢ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ∈ V | |
| 5 | 4 | csbex | ⊢ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ∈ V |
| 6 | 5 | a1i | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑆 ) → ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ∈ V ) |
| 7 | eqid | ⊢ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } | |
| 8 | 7 2 3 | cantnffval | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) = ( 𝑓 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ) |
| 9 | 7 2 3 | cantnfdm | ⊢ ( 𝜑 → dom ( 𝐴 CNF 𝐵 ) = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) |
| 10 | 1 9 | eqtrid | ⊢ ( 𝜑 → 𝑆 = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) |
| 11 | 10 | mpteq1d | ⊢ ( 𝜑 → ( 𝑓 ∈ 𝑆 ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) = ( 𝑓 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ) |
| 12 | 8 11 | eqtr4d | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) = ( 𝑓 ∈ 𝑆 ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ) |
| 13 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ On ) |
| 14 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ On ) |
| 15 | eqid | ⊢ OrdIso ( E , ( 𝑥 supp ∅ ) ) = OrdIso ( E , ( 𝑥 supp ∅ ) ) | |
| 16 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) | |
| 17 | eqid | ⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 18 | 1 13 14 15 16 17 | cantnfval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) = ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) = ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ) ) |
| 20 | ovex | ⊢ ( 𝑥 supp ∅ ) ∈ V | |
| 21 | 1 13 14 15 16 | cantnfcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( E We ( 𝑥 supp ∅ ) ∧ dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ∈ ω ) ) |
| 22 | 21 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → E We ( 𝑥 supp ∅ ) ) |
| 23 | 15 | oien | ⊢ ( ( ( 𝑥 supp ∅ ) ∈ V ∧ E We ( 𝑥 supp ∅ ) ) → dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ≈ ( 𝑥 supp ∅ ) ) |
| 24 | 20 22 23 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ≈ ( 𝑥 supp ∅ ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ≈ ( 𝑥 supp ∅ ) ) |
| 26 | suppssdm | ⊢ ( 𝑥 supp ∅ ) ⊆ dom 𝑥 | |
| 27 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↔ ( 𝑥 : 𝐵 ⟶ 𝐴 ∧ 𝑥 finSupp ∅ ) ) ) |
| 28 | 27 | simprbda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 : 𝐵 ⟶ 𝐴 ) |
| 29 | 26 28 | fssdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 supp ∅ ) ⊆ 𝐵 ) |
| 30 | feq3 | ⊢ ( 𝐴 = ∅ → ( 𝑥 : 𝐵 ⟶ 𝐴 ↔ 𝑥 : 𝐵 ⟶ ∅ ) ) | |
| 31 | 28 30 | syl5ibcom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐴 = ∅ → 𝑥 : 𝐵 ⟶ ∅ ) ) |
| 32 | 31 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → 𝑥 : 𝐵 ⟶ ∅ ) |
| 33 | f00 | ⊢ ( 𝑥 : 𝐵 ⟶ ∅ ↔ ( 𝑥 = ∅ ∧ 𝐵 = ∅ ) ) | |
| 34 | 32 33 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( 𝑥 = ∅ ∧ 𝐵 = ∅ ) ) |
| 35 | 34 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → 𝐵 = ∅ ) |
| 36 | sseq0 | ⊢ ( ( ( 𝑥 supp ∅ ) ⊆ 𝐵 ∧ 𝐵 = ∅ ) → ( 𝑥 supp ∅ ) = ∅ ) | |
| 37 | 29 35 36 | syl2an2r | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( 𝑥 supp ∅ ) = ∅ ) |
| 38 | 25 37 | breqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ≈ ∅ ) |
| 39 | en0 | ⊢ ( dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ≈ ∅ ↔ dom OrdIso ( E , ( 𝑥 supp ∅ ) ) = ∅ ) | |
| 40 | 38 39 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → dom OrdIso ( E , ( 𝑥 supp ∅ ) ) = ∅ ) |
| 41 | 40 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ( 𝑥 supp ∅ ) ) ) = ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) ) |
| 42 | 0ex | ⊢ ∅ ∈ V | |
| 43 | 17 | seqom0g | ⊢ ( ∅ ∈ V → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) = ∅ ) |
| 44 | 42 43 | mp1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑥 ‘ ( OrdIso ( E , ( 𝑥 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) = ∅ ) |
| 45 | 19 41 44 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) = ∅ ) |
| 46 | el1o | ⊢ ( ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) ∈ 1o ↔ ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) = ∅ ) | |
| 47 | 45 46 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) ∈ 1o ) |
| 48 | 35 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = ( 𝐴 ↑o ∅ ) ) |
| 49 | 13 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → 𝐴 ∈ On ) |
| 50 | oe0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) | |
| 51 | 49 50 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o ∅ ) = 1o ) |
| 52 | 48 51 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = 1o ) |
| 53 | 47 52 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) ∈ ( 𝐴 ↑o 𝐵 ) ) |
| 54 | 13 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ On ) |
| 55 | 14 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 ≠ ∅ ) → 𝐵 ∈ On ) |
| 56 | 16 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 ≠ ∅ ) → 𝑥 ∈ 𝑆 ) |
| 57 | on0eln0 | ⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 58 | 13 57 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 59 | 58 | biimpar | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 ≠ ∅ ) → ∅ ∈ 𝐴 ) |
| 60 | 29 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 ≠ ∅ ) → ( 𝑥 supp ∅ ) ⊆ 𝐵 ) |
| 61 | 1 54 55 56 59 55 60 | cantnflt2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 ≠ ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) ∈ ( 𝐴 ↑o 𝐵 ) ) |
| 62 | 53 61 | pm2.61dane | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑥 ) ∈ ( 𝐴 ↑o 𝐵 ) ) |
| 63 | 6 12 62 | fmpt2d | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) : 𝑆 ⟶ ( 𝐴 ↑o 𝐵 ) ) |