This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnf . The function appearing in cantnfval is unconditionally a function. (Contributed by Mario Carneiro, 20-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cantnfvalf.f | ⊢ 𝐹 = seqω ( ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) , ∅ ) | |
| Assertion | cantnfvalf | ⊢ 𝐹 : ω ⟶ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfvalf.f | ⊢ 𝐹 = seqω ( ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) , ∅ ) | |
| 2 | 1 | fnseqom | ⊢ 𝐹 Fn ω |
| 3 | nn0suc | ⊢ ( 𝑥 ∈ ω → ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ ω 𝑥 = suc 𝑦 ) ) | |
| 4 | fveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ∅ ) ) | |
| 5 | 0ex | ⊢ ∅ ∈ V | |
| 6 | 1 | seqom0g | ⊢ ( ∅ ∈ V → ( 𝐹 ‘ ∅ ) = ∅ ) |
| 7 | 5 6 | ax-mp | ⊢ ( 𝐹 ‘ ∅ ) = ∅ |
| 8 | 4 7 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( 𝐹 ‘ 𝑥 ) = ∅ ) |
| 9 | 0elon | ⊢ ∅ ∈ On | |
| 10 | 8 9 | eqeltrdi | ⊢ ( 𝑥 = ∅ → ( 𝐹 ‘ 𝑥 ) ∈ On ) |
| 11 | 1 | seqomsuc | ⊢ ( 𝑦 ∈ ω → ( 𝐹 ‘ suc 𝑦 ) = ( 𝑦 ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 12 | df-ov | ⊢ ( 𝑦 ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) ‘ 〈 𝑦 , ( 𝐹 ‘ 𝑦 ) 〉 ) | |
| 13 | 11 12 | eqtrdi | ⊢ ( 𝑦 ∈ ω → ( 𝐹 ‘ suc 𝑦 ) = ( ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) ‘ 〈 𝑦 , ( 𝐹 ‘ 𝑦 ) 〉 ) ) |
| 14 | df-ov | ⊢ ( 𝐶 +o 𝐷 ) = ( +o ‘ 〈 𝐶 , 𝐷 〉 ) | |
| 15 | fnoa | ⊢ +o Fn ( On × On ) | |
| 16 | oacl | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 +o 𝑦 ) ∈ On ) | |
| 17 | 16 | rgen2 | ⊢ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( 𝑥 +o 𝑦 ) ∈ On |
| 18 | ffnov | ⊢ ( +o : ( On × On ) ⟶ On ↔ ( +o Fn ( On × On ) ∧ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( 𝑥 +o 𝑦 ) ∈ On ) ) | |
| 19 | 15 17 18 | mpbir2an | ⊢ +o : ( On × On ) ⟶ On |
| 20 | 19 9 | f0cli | ⊢ ( +o ‘ 〈 𝐶 , 𝐷 〉 ) ∈ On |
| 21 | 14 20 | eqeltri | ⊢ ( 𝐶 +o 𝐷 ) ∈ On |
| 22 | 21 | rgen2w | ⊢ ∀ 𝑘 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝐶 +o 𝐷 ) ∈ On |
| 23 | eqid | ⊢ ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) = ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) | |
| 24 | 23 | fmpo | ⊢ ( ∀ 𝑘 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ( 𝐶 +o 𝐷 ) ∈ On ↔ ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) : ( 𝐴 × 𝐵 ) ⟶ On ) |
| 25 | 22 24 | mpbi | ⊢ ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) : ( 𝐴 × 𝐵 ) ⟶ On |
| 26 | 25 9 | f0cli | ⊢ ( ( 𝑘 ∈ 𝐴 , 𝑧 ∈ 𝐵 ↦ ( 𝐶 +o 𝐷 ) ) ‘ 〈 𝑦 , ( 𝐹 ‘ 𝑦 ) 〉 ) ∈ On |
| 27 | 13 26 | eqeltrdi | ⊢ ( 𝑦 ∈ ω → ( 𝐹 ‘ suc 𝑦 ) ∈ On ) |
| 28 | fveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ suc 𝑦 ) ) | |
| 29 | 28 | eleq1d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ∈ On ↔ ( 𝐹 ‘ suc 𝑦 ) ∈ On ) ) |
| 30 | 27 29 | syl5ibrcom | ⊢ ( 𝑦 ∈ ω → ( 𝑥 = suc 𝑦 → ( 𝐹 ‘ 𝑥 ) ∈ On ) ) |
| 31 | 30 | rexlimiv | ⊢ ( ∃ 𝑦 ∈ ω 𝑥 = suc 𝑦 → ( 𝐹 ‘ 𝑥 ) ∈ On ) |
| 32 | 10 31 | jaoi | ⊢ ( ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ ω 𝑥 = suc 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ∈ On ) |
| 33 | 3 32 | syl | ⊢ ( 𝑥 ∈ ω → ( 𝐹 ‘ 𝑥 ) ∈ On ) |
| 34 | 33 | rgen | ⊢ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ On |
| 35 | ffnfv | ⊢ ( 𝐹 : ω ⟶ On ↔ ( 𝐹 Fn ω ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ On ) ) | |
| 36 | 2 34 35 | mpbir2an | ⊢ 𝐹 : ω ⟶ On |