This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unizlim | ⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | ⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) | |
| 2 | df-lim | ⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ) | |
| 3 | 2 | biimpri | ⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) → Lim 𝐴 ) |
| 4 | 3 | 3exp | ⊢ ( Ord 𝐴 → ( 𝐴 ≠ ∅ → ( 𝐴 = ∪ 𝐴 → Lim 𝐴 ) ) ) |
| 5 | 1 4 | biimtrrid | ⊢ ( Ord 𝐴 → ( ¬ 𝐴 = ∅ → ( 𝐴 = ∪ 𝐴 → Lim 𝐴 ) ) ) |
| 6 | 5 | com23 | ⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 → ( ¬ 𝐴 = ∅ → Lim 𝐴 ) ) ) |
| 7 | 6 | imp | ⊢ ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) → ( ¬ 𝐴 = ∅ → Lim 𝐴 ) ) |
| 8 | 7 | orrd | ⊢ ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) → ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) |
| 9 | 8 | ex | ⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 → ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) ) |
| 10 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 11 | 10 | eqcomi | ⊢ ∅ = ∪ ∅ |
| 12 | id | ⊢ ( 𝐴 = ∅ → 𝐴 = ∅ ) | |
| 13 | unieq | ⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∪ ∅ ) | |
| 14 | 11 12 13 | 3eqtr4a | ⊢ ( 𝐴 = ∅ → 𝐴 = ∪ 𝐴 ) |
| 15 | limuni | ⊢ ( Lim 𝐴 → 𝐴 = ∪ 𝐴 ) | |
| 16 | 14 15 | jaoi | ⊢ ( ( 𝐴 = ∅ ∨ Lim 𝐴 ) → 𝐴 = ∪ 𝐴 ) |
| 17 | 9 16 | impbid1 | ⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) ) |