This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of BellMachover p. 469. Lemma 1.3 of Schloeder p. 1. (Contributed by NM, 26-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onelon | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 2 | ordelon | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ On ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ On ) |