This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem fvex

Description: The value of a class exists. Corollary 6.13 of TakeutiZaring p. 27. (Contributed by NM, 30-Dec-1996)

Ref Expression
Assertion fvex ( 𝐹𝐴 ) ∈ V

Proof

Step Hyp Ref Expression
1 df-fv ( 𝐹𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 )
2 iotaex ( ℩ 𝑥 𝐴 𝐹 𝑥 ) ∈ V
3 1 2 eqeltri ( 𝐹𝐴 ) ∈ V