This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐶 ) ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ococnv2 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ 𝐵 ) ) | |
| 2 | 1 | fveq1d | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝐹 ∘ ◡ 𝐹 ) ‘ 𝐶 ) = ( ( I ↾ 𝐵 ) ‘ 𝐶 ) ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐹 ∘ ◡ 𝐹 ) ‘ 𝐶 ) = ( ( I ↾ 𝐵 ) ‘ 𝐶 ) ) |
| 4 | f1ocnv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 5 | f1of | ⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 7 | fvco3 | ⊢ ( ( ◡ 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐹 ∘ ◡ 𝐹 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐶 ) ) ) | |
| 8 | 6 7 | sylan | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐹 ∘ ◡ 𝐹 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐶 ) ) ) |
| 9 | fvresi | ⊢ ( 𝐶 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝐶 ) = 𝐶 ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ( I ↾ 𝐵 ) ‘ 𝐶 ) = 𝐶 ) |
| 11 | 3 8 10 | 3eqtr3d | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐶 ) ) = 𝐶 ) |