This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A wff th containing a conditional operator is true when both of its cases are true. (Contributed by NM, 15-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ifboth.1 | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐵 ) → ( 𝜓 ↔ 𝜃 ) ) | |
| ifboth.2 | ⊢ ( 𝐵 = if ( 𝜑 , 𝐴 , 𝐵 ) → ( 𝜒 ↔ 𝜃 ) ) | ||
| ifbothda.3 | ⊢ ( ( 𝜂 ∧ 𝜑 ) → 𝜓 ) | ||
| ifbothda.4 | ⊢ ( ( 𝜂 ∧ ¬ 𝜑 ) → 𝜒 ) | ||
| Assertion | ifbothda | ⊢ ( 𝜂 → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifboth.1 | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐵 ) → ( 𝜓 ↔ 𝜃 ) ) | |
| 2 | ifboth.2 | ⊢ ( 𝐵 = if ( 𝜑 , 𝐴 , 𝐵 ) → ( 𝜒 ↔ 𝜃 ) ) | |
| 3 | ifbothda.3 | ⊢ ( ( 𝜂 ∧ 𝜑 ) → 𝜓 ) | |
| 4 | ifbothda.4 | ⊢ ( ( 𝜂 ∧ ¬ 𝜑 ) → 𝜒 ) | |
| 5 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) | |
| 6 | 5 | eqcomd | ⊢ ( 𝜑 → 𝐴 = if ( 𝜑 , 𝐴 , 𝐵 ) ) |
| 7 | 6 1 | syl | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝜂 ∧ 𝜑 ) → ( 𝜓 ↔ 𝜃 ) ) |
| 9 | 3 8 | mpbid | ⊢ ( ( 𝜂 ∧ 𝜑 ) → 𝜃 ) |
| 10 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) | |
| 11 | 10 | eqcomd | ⊢ ( ¬ 𝜑 → 𝐵 = if ( 𝜑 , 𝐴 , 𝐵 ) ) |
| 12 | 11 2 | syl | ⊢ ( ¬ 𝜑 → ( 𝜒 ↔ 𝜃 ) ) |
| 13 | 12 | adantl | ⊢ ( ( 𝜂 ∧ ¬ 𝜑 ) → ( 𝜒 ↔ 𝜃 ) ) |
| 14 | 4 13 | mpbid | ⊢ ( ( 𝜂 ∧ ¬ 𝜑 ) → 𝜃 ) |
| 15 | 9 14 | pm2.61dan | ⊢ ( 𝜂 → 𝜃 ) |