This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set is equinumerous only to itself. Exercise 1 of TakeutiZaring p. 88. (Contributed by NM, 27-May-1998) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en0 | ⊢ ( 𝐴 ≈ ∅ ↔ 𝐴 = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv | ⊢ ( 𝐴 ≈ ∅ → ( 𝐴 ∈ V ∧ ∅ ∈ V ) ) | |
| 2 | breng | ⊢ ( ( 𝐴 ∈ V ∧ ∅ ∈ V ) → ( 𝐴 ≈ ∅ ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ ∅ ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ≈ ∅ → ( 𝐴 ≈ ∅ ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ ∅ ) ) |
| 4 | 3 | ibi | ⊢ ( 𝐴 ≈ ∅ → ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ ∅ ) |
| 5 | f1ocnv | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ∅ → ◡ 𝑓 : ∅ –1-1-onto→ 𝐴 ) | |
| 6 | f1o00 | ⊢ ( ◡ 𝑓 : ∅ –1-1-onto→ 𝐴 ↔ ( ◡ 𝑓 = ∅ ∧ 𝐴 = ∅ ) ) | |
| 7 | 6 | simprbi | ⊢ ( ◡ 𝑓 : ∅ –1-1-onto→ 𝐴 → 𝐴 = ∅ ) |
| 8 | 5 7 | syl | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ∅ → 𝐴 = ∅ ) |
| 9 | 8 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ ∅ → 𝐴 = ∅ ) |
| 10 | 4 9 | syl | ⊢ ( 𝐴 ≈ ∅ → 𝐴 = ∅ ) |
| 11 | 0ex | ⊢ ∅ ∈ V | |
| 12 | f1oeq1 | ⊢ ( 𝑓 = ∅ → ( 𝑓 : ∅ –1-1-onto→ ∅ ↔ ∅ : ∅ –1-1-onto→ ∅ ) ) | |
| 13 | f1o0 | ⊢ ∅ : ∅ –1-1-onto→ ∅ | |
| 14 | 11 12 13 | ceqsexv2d | ⊢ ∃ 𝑓 𝑓 : ∅ –1-1-onto→ ∅ |
| 15 | breng | ⊢ ( ( ∅ ∈ V ∧ ∅ ∈ V ) → ( ∅ ≈ ∅ ↔ ∃ 𝑓 𝑓 : ∅ –1-1-onto→ ∅ ) ) | |
| 16 | 11 11 15 | mp2an | ⊢ ( ∅ ≈ ∅ ↔ ∃ 𝑓 𝑓 : ∅ –1-1-onto→ ∅ ) |
| 17 | 14 16 | mpbir | ⊢ ∅ ≈ ∅ |
| 18 | breq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ≈ ∅ ↔ ∅ ≈ ∅ ) ) | |
| 19 | 17 18 | mpbiri | ⊢ ( 𝐴 = ∅ → 𝐴 ≈ ∅ ) |
| 20 | 10 19 | impbii | ⊢ ( 𝐴 ≈ ∅ ↔ 𝐴 = ∅ ) |