This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rewrite a disjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifor | ⊢ if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 𝐵 ) = if ( 𝜑 , 𝐴 , if ( 𝜓 , 𝐴 , 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue | ⊢ ( ( 𝜑 ∨ 𝜓 ) → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 𝐵 ) = 𝐴 ) | |
| 2 | 1 | orcs | ⊢ ( 𝜑 → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 𝐵 ) = 𝐴 ) |
| 3 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , if ( 𝜓 , 𝐴 , 𝐵 ) ) = 𝐴 ) | |
| 4 | 2 3 | eqtr4d | ⊢ ( 𝜑 → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 𝐵 ) = if ( 𝜑 , 𝐴 , if ( 𝜓 , 𝐴 , 𝐵 ) ) ) |
| 5 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , if ( 𝜓 , 𝐴 , 𝐵 ) ) = if ( 𝜓 , 𝐴 , 𝐵 ) ) | |
| 6 | biorf | ⊢ ( ¬ 𝜑 → ( 𝜓 ↔ ( 𝜑 ∨ 𝜓 ) ) ) | |
| 7 | 6 | ifbid | ⊢ ( ¬ 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 𝐵 ) ) |
| 8 | 5 7 | eqtr2d | ⊢ ( ¬ 𝜑 → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 𝐵 ) = if ( 𝜑 , 𝐴 , if ( 𝜓 , 𝐴 , 𝐵 ) ) ) |
| 9 | 4 8 | pm2.61i | ⊢ if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 𝐵 ) = if ( 𝜑 , 𝐴 , if ( 𝜓 , 𝐴 , 𝐵 ) ) |