This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnf . (Contributed by Mario Carneiro, 28-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | ||
| cantnf.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ↑o 𝐵 ) ) | ||
| cantnf.s | ⊢ ( 𝜑 → 𝐶 ⊆ ran ( 𝐴 CNF 𝐵 ) ) | ||
| cantnf.e | ⊢ ( 𝜑 → ∅ ∈ 𝐶 ) | ||
| Assertion | cantnflem2 | ⊢ ( 𝜑 → ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 5 | cantnf.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ↑o 𝐵 ) ) | |
| 6 | cantnf.s | ⊢ ( 𝜑 → 𝐶 ⊆ ran ( 𝐴 CNF 𝐵 ) ) | |
| 7 | cantnf.e | ⊢ ( 𝜑 → ∅ ∈ 𝐶 ) | |
| 8 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) | |
| 9 | 2 3 8 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 10 | onelon | ⊢ ( ( ( 𝐴 ↑o 𝐵 ) ∈ On ∧ 𝐶 ∈ ( 𝐴 ↑o 𝐵 ) ) → 𝐶 ∈ On ) | |
| 11 | 9 5 10 | syl2anc | ⊢ ( 𝜑 → 𝐶 ∈ On ) |
| 12 | ondif1 | ⊢ ( 𝐶 ∈ ( On ∖ 1o ) ↔ ( 𝐶 ∈ On ∧ ∅ ∈ 𝐶 ) ) | |
| 13 | 11 7 12 | sylanbrc | ⊢ ( 𝜑 → 𝐶 ∈ ( On ∖ 1o ) ) |
| 14 | 13 | eldifbd | ⊢ ( 𝜑 → ¬ 𝐶 ∈ 1o ) |
| 15 | ssel | ⊢ ( ( 𝐴 ↑o 𝐵 ) ⊆ 1o → ( 𝐶 ∈ ( 𝐴 ↑o 𝐵 ) → 𝐶 ∈ 1o ) ) | |
| 16 | 5 15 | syl5com | ⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝐵 ) ⊆ 1o → 𝐶 ∈ 1o ) ) |
| 17 | 14 16 | mtod | ⊢ ( 𝜑 → ¬ ( 𝐴 ↑o 𝐵 ) ⊆ 1o ) |
| 18 | oe0m | ⊢ ( 𝐵 ∈ On → ( ∅ ↑o 𝐵 ) = ( 1o ∖ 𝐵 ) ) | |
| 19 | 3 18 | syl | ⊢ ( 𝜑 → ( ∅ ↑o 𝐵 ) = ( 1o ∖ 𝐵 ) ) |
| 20 | difss | ⊢ ( 1o ∖ 𝐵 ) ⊆ 1o | |
| 21 | 19 20 | eqsstrdi | ⊢ ( 𝜑 → ( ∅ ↑o 𝐵 ) ⊆ 1o ) |
| 22 | oveq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐵 ) = ( ∅ ↑o 𝐵 ) ) | |
| 23 | 22 | sseq1d | ⊢ ( 𝐴 = ∅ → ( ( 𝐴 ↑o 𝐵 ) ⊆ 1o ↔ ( ∅ ↑o 𝐵 ) ⊆ 1o ) ) |
| 24 | 21 23 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐵 ) ⊆ 1o ) ) |
| 25 | oe1m | ⊢ ( 𝐵 ∈ On → ( 1o ↑o 𝐵 ) = 1o ) | |
| 26 | eqimss | ⊢ ( ( 1o ↑o 𝐵 ) = 1o → ( 1o ↑o 𝐵 ) ⊆ 1o ) | |
| 27 | 3 25 26 | 3syl | ⊢ ( 𝜑 → ( 1o ↑o 𝐵 ) ⊆ 1o ) |
| 28 | oveq1 | ⊢ ( 𝐴 = 1o → ( 𝐴 ↑o 𝐵 ) = ( 1o ↑o 𝐵 ) ) | |
| 29 | 28 | sseq1d | ⊢ ( 𝐴 = 1o → ( ( 𝐴 ↑o 𝐵 ) ⊆ 1o ↔ ( 1o ↑o 𝐵 ) ⊆ 1o ) ) |
| 30 | 27 29 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝐴 = 1o → ( 𝐴 ↑o 𝐵 ) ⊆ 1o ) ) |
| 31 | 24 30 | jaod | ⊢ ( 𝜑 → ( ( 𝐴 = ∅ ∨ 𝐴 = 1o ) → ( 𝐴 ↑o 𝐵 ) ⊆ 1o ) ) |
| 32 | 17 31 | mtod | ⊢ ( 𝜑 → ¬ ( 𝐴 = ∅ ∨ 𝐴 = 1o ) ) |
| 33 | elpri | ⊢ ( 𝐴 ∈ { ∅ , 1o } → ( 𝐴 = ∅ ∨ 𝐴 = 1o ) ) | |
| 34 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
| 35 | 33 34 | eleq2s | ⊢ ( 𝐴 ∈ 2o → ( 𝐴 = ∅ ∨ 𝐴 = 1o ) ) |
| 36 | 32 35 | nsyl | ⊢ ( 𝜑 → ¬ 𝐴 ∈ 2o ) |
| 37 | 2 36 | eldifd | ⊢ ( 𝜑 → 𝐴 ∈ ( On ∖ 2o ) ) |
| 38 | 37 13 | jca | ⊢ ( 𝜑 → ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) |