This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A natural number is not a limit ordinal. (Contributed by NM, 18-Oct-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnlim | ⊢ ( 𝐴 ∈ ω → ¬ Lim 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnord | ⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) | |
| 2 | ordirr | ⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ω → ¬ 𝐴 ∈ 𝐴 ) |
| 4 | elom | ⊢ ( 𝐴 ∈ ω ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ) ) | |
| 5 | 4 | simprbi | ⊢ ( 𝐴 ∈ ω → ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ) |
| 6 | limeq | ⊢ ( 𝑥 = 𝐴 → ( Lim 𝑥 ↔ Lim 𝐴 ) ) | |
| 7 | eleq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴 ) ) | |
| 8 | 6 7 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ↔ ( Lim 𝐴 → 𝐴 ∈ 𝐴 ) ) ) |
| 9 | 8 | spcgv | ⊢ ( 𝐴 ∈ ω → ( ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) → ( Lim 𝐴 → 𝐴 ∈ 𝐴 ) ) ) |
| 10 | 5 9 | mpd | ⊢ ( 𝐴 ∈ ω → ( Lim 𝐴 → 𝐴 ∈ 𝐴 ) ) |
| 11 | 3 10 | mtod | ⊢ ( 𝐴 ∈ ω → ¬ Lim 𝐴 ) |