This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 28-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppssr.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| suppssr.n | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) | ||
| suppssr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| suppssr.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | ||
| Assertion | suppssr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝑊 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssr.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | suppssr.n | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) | |
| 3 | suppssr.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 4 | suppssr.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | |
| 5 | eldif | ⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝑊 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊 ) ) | |
| 6 | fvex | ⊢ ( 𝐹 ‘ 𝑋 ) ∈ V | |
| 7 | eldifsn | ⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ ( V ∖ { 𝑍 } ) ↔ ( ( 𝐹 ‘ 𝑋 ) ∈ V ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ) | |
| 8 | 6 7 | mpbiran | ⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ ( V ∖ { 𝑍 } ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) |
| 9 | 1 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 10 | elsuppfn | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑈 ) → ( 𝑋 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ) ) | |
| 11 | 9 3 4 10 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ) ) |
| 12 | ibar | ⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ V → ( ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ↔ ( ( 𝐹 ‘ 𝑋 ) ∈ V ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ) ) | |
| 13 | 6 12 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ↔ ( ( 𝐹 ‘ 𝑋 ) ∈ V ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ) ) |
| 14 | 13 7 | bitr4di | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ↔ ( 𝐹 ‘ 𝑋 ) ∈ ( V ∖ { 𝑍 } ) ) ) |
| 15 | 14 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( V ∖ { 𝑍 } ) ) ) ) |
| 16 | 11 15 | bitrd | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( V ∖ { 𝑍 } ) ) ) ) |
| 17 | 2 | sseld | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐹 supp 𝑍 ) → 𝑋 ∈ 𝑊 ) ) |
| 18 | 16 17 | sylbird | ⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( V ∖ { 𝑍 } ) ) → 𝑋 ∈ 𝑊 ) ) |
| 19 | 18 | expdimp | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ ( V ∖ { 𝑍 } ) → 𝑋 ∈ 𝑊 ) ) |
| 20 | 8 19 | biimtrrid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 → 𝑋 ∈ 𝑊 ) ) |
| 21 | 20 | necon1bd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → ( ¬ 𝑋 ∈ 𝑊 → ( 𝐹 ‘ 𝑋 ) = 𝑍 ) ) |
| 22 | 21 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝑊 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑍 ) |
| 23 | 5 22 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝑊 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑍 ) |