This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cantor Normal Form theorem. The function ( A CNF B ) , which maps a finitely supported function from B to A to the sum ( ( A ^o f ( a 1 ) ) o. a 1 ) +o ( ( A ^o f ( a 2 ) ) o. a 2 ) +o ... over all indices a < B such that f ( a ) is nonzero, is an order isomorphism from the ordering T of finitely supported functions to the set ( A ^o B ) under the natural order. Setting A = _om and letting B be arbitrarily large, the surjectivity of this function implies that every ordinal has a Cantor normal form (and injectivity, together with coherence cantnfres , implies that such a representation is unique). (Contributed by Mario Carneiro, 28-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | ||
| Assertion | cantnf | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) Isom 𝑇 , E ( 𝑆 , ( 𝐴 ↑o 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 5 | 1 2 3 4 | oemapso | ⊢ ( 𝜑 → 𝑇 Or 𝑆 ) |
| 6 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) | |
| 7 | 2 3 6 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 8 | eloni | ⊢ ( ( 𝐴 ↑o 𝐵 ) ∈ On → Ord ( 𝐴 ↑o 𝐵 ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → Ord ( 𝐴 ↑o 𝐵 ) ) |
| 10 | ordwe | ⊢ ( Ord ( 𝐴 ↑o 𝐵 ) → E We ( 𝐴 ↑o 𝐵 ) ) | |
| 11 | weso | ⊢ ( E We ( 𝐴 ↑o 𝐵 ) → E Or ( 𝐴 ↑o 𝐵 ) ) | |
| 12 | sopo | ⊢ ( E Or ( 𝐴 ↑o 𝐵 ) → E Po ( 𝐴 ↑o 𝐵 ) ) | |
| 13 | 9 10 11 12 | 4syl | ⊢ ( 𝜑 → E Po ( 𝐴 ↑o 𝐵 ) ) |
| 14 | 1 2 3 | cantnff | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) : 𝑆 ⟶ ( 𝐴 ↑o 𝐵 ) ) |
| 15 | 14 | frnd | ⊢ ( 𝜑 → ran ( 𝐴 CNF 𝐵 ) ⊆ ( 𝐴 ↑o 𝐵 ) ) |
| 16 | onss | ⊢ ( ( 𝐴 ↑o 𝐵 ) ∈ On → ( 𝐴 ↑o 𝐵 ) ⊆ On ) | |
| 17 | 7 16 | syl | ⊢ ( 𝜑 → ( 𝐴 ↑o 𝐵 ) ⊆ On ) |
| 18 | 17 | sseld | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑡 ∈ On ) ) |
| 19 | eleq1w | ⊢ ( 𝑡 = 𝑦 → ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ↔ 𝑦 ∈ ( 𝐴 ↑o 𝐵 ) ) ) | |
| 20 | eleq1w | ⊢ ( 𝑡 = 𝑦 → ( 𝑡 ∈ ran ( 𝐴 CNF 𝐵 ) ↔ 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) | |
| 21 | 19 20 | imbi12d | ⊢ ( 𝑡 = 𝑦 → ( ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑡 ∈ ran ( 𝐴 CNF 𝐵 ) ) ↔ ( 𝑦 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) ) |
| 22 | 21 | imbi2d | ⊢ ( 𝑡 = 𝑦 → ( ( 𝜑 → ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑡 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) ↔ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) ) ) |
| 23 | r19.21v | ⊢ ( ∀ 𝑦 ∈ 𝑡 ( 𝜑 → ( 𝑦 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) ↔ ( 𝜑 → ∀ 𝑦 ∈ 𝑡 ( 𝑦 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) ) | |
| 24 | ordelss | ⊢ ( ( Ord ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ) → 𝑡 ⊆ ( 𝐴 ↑o 𝐵 ) ) | |
| 25 | 9 24 | sylan | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ) → 𝑡 ⊆ ( 𝐴 ↑o 𝐵 ) ) |
| 26 | 25 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ) ∧ 𝑦 ∈ 𝑡 ) → 𝑦 ∈ ( 𝐴 ↑o 𝐵 ) ) |
| 27 | pm5.5 | ⊢ ( 𝑦 ∈ ( 𝐴 ↑o 𝐵 ) → ( ( 𝑦 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) ↔ 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) | |
| 28 | 26 27 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ) ∧ 𝑦 ∈ 𝑡 ) → ( ( 𝑦 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) ↔ 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) |
| 29 | 28 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝑡 ( 𝑦 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) ↔ ∀ 𝑦 ∈ 𝑡 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) |
| 30 | dfss3 | ⊢ ( 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ↔ ∀ 𝑦 ∈ 𝑡 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) | |
| 31 | 29 30 | bitr4di | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝑡 ( 𝑦 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) ↔ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) |
| 32 | eleq1 | ⊢ ( 𝑡 = ∅ → ( 𝑡 ∈ ran ( 𝐴 CNF 𝐵 ) ↔ ∅ ∈ ran ( 𝐴 CNF 𝐵 ) ) ) | |
| 33 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → 𝐴 ∈ On ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) ∧ 𝑡 ≠ ∅ ) → 𝐴 ∈ On ) |
| 35 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → 𝐵 ∈ On ) |
| 36 | 35 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) ∧ 𝑡 ≠ ∅ ) → 𝐵 ∈ On ) |
| 37 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) ∧ 𝑡 ≠ ∅ ) → 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ) | |
| 38 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) ∧ 𝑡 ≠ ∅ ) → 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) | |
| 39 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 40 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ) | |
| 41 | onelon | ⊢ ( ( ( 𝐴 ↑o 𝐵 ) ∈ On ∧ 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ) → 𝑡 ∈ On ) | |
| 42 | 39 40 41 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → 𝑡 ∈ On ) |
| 43 | on0eln0 | ⊢ ( 𝑡 ∈ On → ( ∅ ∈ 𝑡 ↔ 𝑡 ≠ ∅ ) ) | |
| 44 | 42 43 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → ( ∅ ∈ 𝑡 ↔ 𝑡 ≠ ∅ ) ) |
| 45 | 44 | biimpar | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) ∧ 𝑡 ≠ ∅ ) → ∅ ∈ 𝑡 ) |
| 46 | eqid | ⊢ ∪ ∩ { 𝑐 ∈ On ∣ 𝑡 ∈ ( 𝐴 ↑o 𝑐 ) } = ∪ ∩ { 𝑐 ∈ On ∣ 𝑡 ∈ ( 𝐴 ↑o 𝑐 ) } | |
| 47 | eqid | ⊢ ( ℩ 𝑑 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑐 ∈ On ∣ 𝑡 ∈ ( 𝐴 ↑o 𝑐 ) } ) ( 𝑑 = 〈 𝑎 , 𝑏 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑐 ∈ On ∣ 𝑡 ∈ ( 𝐴 ↑o 𝑐 ) } ) ·o 𝑎 ) +o 𝑏 ) = 𝑡 ) ) = ( ℩ 𝑑 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑐 ∈ On ∣ 𝑡 ∈ ( 𝐴 ↑o 𝑐 ) } ) ( 𝑑 = 〈 𝑎 , 𝑏 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑐 ∈ On ∣ 𝑡 ∈ ( 𝐴 ↑o 𝑐 ) } ) ·o 𝑎 ) +o 𝑏 ) = 𝑡 ) ) | |
| 48 | eqid | ⊢ ( 1st ‘ ( ℩ 𝑑 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑐 ∈ On ∣ 𝑡 ∈ ( 𝐴 ↑o 𝑐 ) } ) ( 𝑑 = 〈 𝑎 , 𝑏 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑐 ∈ On ∣ 𝑡 ∈ ( 𝐴 ↑o 𝑐 ) } ) ·o 𝑎 ) +o 𝑏 ) = 𝑡 ) ) ) = ( 1st ‘ ( ℩ 𝑑 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑐 ∈ On ∣ 𝑡 ∈ ( 𝐴 ↑o 𝑐 ) } ) ( 𝑑 = 〈 𝑎 , 𝑏 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑐 ∈ On ∣ 𝑡 ∈ ( 𝐴 ↑o 𝑐 ) } ) ·o 𝑎 ) +o 𝑏 ) = 𝑡 ) ) ) | |
| 49 | eqid | ⊢ ( 2nd ‘ ( ℩ 𝑑 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑐 ∈ On ∣ 𝑡 ∈ ( 𝐴 ↑o 𝑐 ) } ) ( 𝑑 = 〈 𝑎 , 𝑏 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑐 ∈ On ∣ 𝑡 ∈ ( 𝐴 ↑o 𝑐 ) } ) ·o 𝑎 ) +o 𝑏 ) = 𝑡 ) ) ) = ( 2nd ‘ ( ℩ 𝑑 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ( 𝐴 ↑o ∪ ∩ { 𝑐 ∈ On ∣ 𝑡 ∈ ( 𝐴 ↑o 𝑐 ) } ) ( 𝑑 = 〈 𝑎 , 𝑏 〉 ∧ ( ( ( 𝐴 ↑o ∪ ∩ { 𝑐 ∈ On ∣ 𝑡 ∈ ( 𝐴 ↑o 𝑐 ) } ) ·o 𝑎 ) +o 𝑏 ) = 𝑡 ) ) ) | |
| 50 | 1 34 36 4 37 38 45 46 47 48 49 | cantnflem4 | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) ∧ 𝑡 ≠ ∅ ) → 𝑡 ∈ ran ( 𝐴 CNF 𝐵 ) ) |
| 51 | fczsupp0 | ⊢ ( ( 𝐵 × { ∅ } ) supp ∅ ) = ∅ | |
| 52 | 51 | eqcomi | ⊢ ∅ = ( ( 𝐵 × { ∅ } ) supp ∅ ) |
| 53 | oieq2 | ⊢ ( ∅ = ( ( 𝐵 × { ∅ } ) supp ∅ ) → OrdIso ( E , ∅ ) = OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) ) | |
| 54 | 52 53 | ax-mp | ⊢ OrdIso ( E , ∅ ) = OrdIso ( E , ( ( 𝐵 × { ∅ } ) supp ∅ ) ) |
| 55 | ne0i | ⊢ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) → ( 𝐴 ↑o 𝐵 ) ≠ ∅ ) | |
| 56 | 55 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → ( 𝐴 ↑o 𝐵 ) ≠ ∅ ) |
| 57 | oveq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐵 ) = ( ∅ ↑o 𝐵 ) ) | |
| 58 | 57 | neeq1d | ⊢ ( 𝐴 = ∅ → ( ( 𝐴 ↑o 𝐵 ) ≠ ∅ ↔ ( ∅ ↑o 𝐵 ) ≠ ∅ ) ) |
| 59 | 56 58 | syl5ibcom | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → ( 𝐴 = ∅ → ( ∅ ↑o 𝐵 ) ≠ ∅ ) ) |
| 60 | 59 | necon2d | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → ( ( ∅ ↑o 𝐵 ) = ∅ → 𝐴 ≠ ∅ ) ) |
| 61 | on0eln0 | ⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) | |
| 62 | oe0m1 | ⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ ( ∅ ↑o 𝐵 ) = ∅ ) ) | |
| 63 | 61 62 | bitr3d | ⊢ ( 𝐵 ∈ On → ( 𝐵 ≠ ∅ ↔ ( ∅ ↑o 𝐵 ) = ∅ ) ) |
| 64 | 35 63 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → ( 𝐵 ≠ ∅ ↔ ( ∅ ↑o 𝐵 ) = ∅ ) ) |
| 65 | on0eln0 | ⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 66 | 33 65 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 67 | 60 64 66 | 3imtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → ( 𝐵 ≠ ∅ → ∅ ∈ 𝐴 ) ) |
| 68 | ne0i | ⊢ ( 𝑦 ∈ 𝐵 → 𝐵 ≠ ∅ ) | |
| 69 | 67 68 | impel | ⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → ∅ ∈ 𝐴 ) |
| 70 | fconstmpt | ⊢ ( 𝐵 × { ∅ } ) = ( 𝑦 ∈ 𝐵 ↦ ∅ ) | |
| 71 | 69 70 | fmptd | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → ( 𝐵 × { ∅ } ) : 𝐵 ⟶ 𝐴 ) |
| 72 | 0ex | ⊢ ∅ ∈ V | |
| 73 | 72 | a1i | ⊢ ( 𝜑 → ∅ ∈ V ) |
| 74 | 3 73 | fczfsuppd | ⊢ ( 𝜑 → ( 𝐵 × { ∅ } ) finSupp ∅ ) |
| 75 | 74 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → ( 𝐵 × { ∅ } ) finSupp ∅ ) |
| 76 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( ( 𝐵 × { ∅ } ) ∈ 𝑆 ↔ ( ( 𝐵 × { ∅ } ) : 𝐵 ⟶ 𝐴 ∧ ( 𝐵 × { ∅ } ) finSupp ∅ ) ) ) |
| 77 | 76 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → ( ( 𝐵 × { ∅ } ) ∈ 𝑆 ↔ ( ( 𝐵 × { ∅ } ) : 𝐵 ⟶ 𝐴 ∧ ( 𝐵 × { ∅ } ) finSupp ∅ ) ) ) |
| 78 | 71 75 77 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → ( 𝐵 × { ∅ } ) ∈ 𝑆 ) |
| 79 | eqid | ⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ∅ ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ∅ ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ∅ ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ∅ ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 80 | 1 33 35 54 78 79 | cantnfval | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝐵 × { ∅ } ) ) = ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ∅ ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ∅ ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ∅ ) ) ) |
| 81 | we0 | ⊢ E We ∅ | |
| 82 | eqid | ⊢ OrdIso ( E , ∅ ) = OrdIso ( E , ∅ ) | |
| 83 | 82 | oien | ⊢ ( ( ∅ ∈ V ∧ E We ∅ ) → dom OrdIso ( E , ∅ ) ≈ ∅ ) |
| 84 | 72 81 83 | mp2an | ⊢ dom OrdIso ( E , ∅ ) ≈ ∅ |
| 85 | en0 | ⊢ ( dom OrdIso ( E , ∅ ) ≈ ∅ ↔ dom OrdIso ( E , ∅ ) = ∅ ) | |
| 86 | 84 85 | mpbi | ⊢ dom OrdIso ( E , ∅ ) = ∅ |
| 87 | 86 | fveq2i | ⊢ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ∅ ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ∅ ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ∅ ) ) = ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ∅ ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ∅ ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) |
| 88 | 79 | seqom0g | ⊢ ( ∅ ∈ V → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ∅ ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ∅ ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) = ∅ ) |
| 89 | 72 88 | ax-mp | ⊢ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ∅ ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ∅ ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ ∅ ) = ∅ |
| 90 | 87 89 | eqtri | ⊢ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ∅ ) ‘ 𝑘 ) ) ·o ( ( 𝐵 × { ∅ } ) ‘ ( OrdIso ( E , ∅ ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom OrdIso ( E , ∅ ) ) = ∅ |
| 91 | 80 90 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝐵 × { ∅ } ) ) = ∅ ) |
| 92 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → ( 𝐴 CNF 𝐵 ) : 𝑆 ⟶ ( 𝐴 ↑o 𝐵 ) ) |
| 93 | 92 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → ( 𝐴 CNF 𝐵 ) Fn 𝑆 ) |
| 94 | fnfvelrn | ⊢ ( ( ( 𝐴 CNF 𝐵 ) Fn 𝑆 ∧ ( 𝐵 × { ∅ } ) ∈ 𝑆 ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝐵 × { ∅ } ) ) ∈ ran ( 𝐴 CNF 𝐵 ) ) | |
| 95 | 93 78 94 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ ( 𝐵 × { ∅ } ) ) ∈ ran ( 𝐴 CNF 𝐵 ) ) |
| 96 | 91 95 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → ∅ ∈ ran ( 𝐴 CNF 𝐵 ) ) |
| 97 | 32 50 96 | pm2.61ne | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ∧ 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) ) ) → 𝑡 ∈ ran ( 𝐴 CNF 𝐵 ) ) |
| 98 | 97 | expr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ) → ( 𝑡 ⊆ ran ( 𝐴 CNF 𝐵 ) → 𝑡 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) |
| 99 | 31 98 | sylbid | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝑡 ( 𝑦 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) → 𝑡 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) |
| 100 | 99 | ex | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) → ( ∀ 𝑦 ∈ 𝑡 ( 𝑦 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) → 𝑡 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) ) |
| 101 | 100 | com23 | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑡 ( 𝑦 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) → ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑡 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) ) |
| 102 | 101 | a2i | ⊢ ( ( 𝜑 → ∀ 𝑦 ∈ 𝑡 ( 𝑦 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) → ( 𝜑 → ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑡 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) ) |
| 103 | 102 | a1i | ⊢ ( 𝑡 ∈ On → ( ( 𝜑 → ∀ 𝑦 ∈ 𝑡 ( 𝑦 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) → ( 𝜑 → ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑡 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) ) ) |
| 104 | 23 103 | biimtrid | ⊢ ( 𝑡 ∈ On → ( ∀ 𝑦 ∈ 𝑡 ( 𝜑 → ( 𝑦 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑦 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) → ( 𝜑 → ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑡 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) ) ) |
| 105 | 22 104 | tfis2 | ⊢ ( 𝑡 ∈ On → ( 𝜑 → ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑡 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) ) |
| 106 | 105 | com3l | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) → ( 𝑡 ∈ On → 𝑡 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) ) |
| 107 | 18 106 | mpdd | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 ↑o 𝐵 ) → 𝑡 ∈ ran ( 𝐴 CNF 𝐵 ) ) ) |
| 108 | 107 | ssrdv | ⊢ ( 𝜑 → ( 𝐴 ↑o 𝐵 ) ⊆ ran ( 𝐴 CNF 𝐵 ) ) |
| 109 | 15 108 | eqssd | ⊢ ( 𝜑 → ran ( 𝐴 CNF 𝐵 ) = ( 𝐴 ↑o 𝐵 ) ) |
| 110 | dffo2 | ⊢ ( ( 𝐴 CNF 𝐵 ) : 𝑆 –onto→ ( 𝐴 ↑o 𝐵 ) ↔ ( ( 𝐴 CNF 𝐵 ) : 𝑆 ⟶ ( 𝐴 ↑o 𝐵 ) ∧ ran ( 𝐴 CNF 𝐵 ) = ( 𝐴 ↑o 𝐵 ) ) ) | |
| 111 | 14 109 110 | sylanbrc | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) : 𝑆 –onto→ ( 𝐴 ↑o 𝐵 ) ) |
| 112 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆 ) ∧ 𝑓 𝑇 𝑔 ) ) → 𝐴 ∈ On ) |
| 113 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆 ) ∧ 𝑓 𝑇 𝑔 ) ) → 𝐵 ∈ On ) |
| 114 | fveq2 | ⊢ ( 𝑧 = 𝑡 → ( 𝑥 ‘ 𝑧 ) = ( 𝑥 ‘ 𝑡 ) ) | |
| 115 | fveq2 | ⊢ ( 𝑧 = 𝑡 → ( 𝑦 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑡 ) ) | |
| 116 | 114 115 | eleq12d | ⊢ ( 𝑧 = 𝑡 → ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ↔ ( 𝑥 ‘ 𝑡 ) ∈ ( 𝑦 ‘ 𝑡 ) ) ) |
| 117 | eleq1w | ⊢ ( 𝑧 = 𝑡 → ( 𝑧 ∈ 𝑤 ↔ 𝑡 ∈ 𝑤 ) ) | |
| 118 | 117 | imbi1d | ⊢ ( 𝑧 = 𝑡 → ( ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( 𝑡 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 119 | 118 | ralbidv | ⊢ ( 𝑧 = 𝑡 → ( ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝑡 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 120 | 116 119 | anbi12d | ⊢ ( 𝑧 = 𝑡 → ( ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑥 ‘ 𝑡 ) ∈ ( 𝑦 ‘ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑡 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 121 | 120 | cbvrexvw | ⊢ ( ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑡 ∈ 𝐵 ( ( 𝑥 ‘ 𝑡 ) ∈ ( 𝑦 ‘ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑡 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 122 | fveq1 | ⊢ ( 𝑥 = 𝑢 → ( 𝑥 ‘ 𝑡 ) = ( 𝑢 ‘ 𝑡 ) ) | |
| 123 | fveq1 | ⊢ ( 𝑦 = 𝑣 → ( 𝑦 ‘ 𝑡 ) = ( 𝑣 ‘ 𝑡 ) ) | |
| 124 | eleq12 | ⊢ ( ( ( 𝑥 ‘ 𝑡 ) = ( 𝑢 ‘ 𝑡 ) ∧ ( 𝑦 ‘ 𝑡 ) = ( 𝑣 ‘ 𝑡 ) ) → ( ( 𝑥 ‘ 𝑡 ) ∈ ( 𝑦 ‘ 𝑡 ) ↔ ( 𝑢 ‘ 𝑡 ) ∈ ( 𝑣 ‘ 𝑡 ) ) ) | |
| 125 | 122 123 124 | syl2an | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ( 𝑥 ‘ 𝑡 ) ∈ ( 𝑦 ‘ 𝑡 ) ↔ ( 𝑢 ‘ 𝑡 ) ∈ ( 𝑣 ‘ 𝑡 ) ) ) |
| 126 | fveq1 | ⊢ ( 𝑥 = 𝑢 → ( 𝑥 ‘ 𝑤 ) = ( 𝑢 ‘ 𝑤 ) ) | |
| 127 | fveq1 | ⊢ ( 𝑦 = 𝑣 → ( 𝑦 ‘ 𝑤 ) = ( 𝑣 ‘ 𝑤 ) ) | |
| 128 | 126 127 | eqeqan12d | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ↔ ( 𝑢 ‘ 𝑤 ) = ( 𝑣 ‘ 𝑤 ) ) ) |
| 129 | 128 | imbi2d | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ( 𝑡 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( 𝑡 ∈ 𝑤 → ( 𝑢 ‘ 𝑤 ) = ( 𝑣 ‘ 𝑤 ) ) ) ) |
| 130 | 129 | ralbidv | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ∀ 𝑤 ∈ 𝐵 ( 𝑡 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝑡 ∈ 𝑤 → ( 𝑢 ‘ 𝑤 ) = ( 𝑣 ‘ 𝑤 ) ) ) ) |
| 131 | 125 130 | anbi12d | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ( ( 𝑥 ‘ 𝑡 ) ∈ ( 𝑦 ‘ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑡 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑢 ‘ 𝑡 ) ∈ ( 𝑣 ‘ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑡 ∈ 𝑤 → ( 𝑢 ‘ 𝑤 ) = ( 𝑣 ‘ 𝑤 ) ) ) ) ) |
| 132 | 131 | rexbidv | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ∃ 𝑡 ∈ 𝐵 ( ( 𝑥 ‘ 𝑡 ) ∈ ( 𝑦 ‘ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑡 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑡 ∈ 𝐵 ( ( 𝑢 ‘ 𝑡 ) ∈ ( 𝑣 ‘ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑡 ∈ 𝑤 → ( 𝑢 ‘ 𝑤 ) = ( 𝑣 ‘ 𝑤 ) ) ) ) ) |
| 133 | 121 132 | bitrid | ⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑡 ∈ 𝐵 ( ( 𝑢 ‘ 𝑡 ) ∈ ( 𝑣 ‘ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑡 ∈ 𝑤 → ( 𝑢 ‘ 𝑤 ) = ( 𝑣 ‘ 𝑤 ) ) ) ) ) |
| 134 | 133 | cbvopabv | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } = { 〈 𝑢 , 𝑣 〉 ∣ ∃ 𝑡 ∈ 𝐵 ( ( 𝑢 ‘ 𝑡 ) ∈ ( 𝑣 ‘ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑡 ∈ 𝑤 → ( 𝑢 ‘ 𝑤 ) = ( 𝑣 ‘ 𝑤 ) ) ) } |
| 135 | 4 134 | eqtri | ⊢ 𝑇 = { 〈 𝑢 , 𝑣 〉 ∣ ∃ 𝑡 ∈ 𝐵 ( ( 𝑢 ‘ 𝑡 ) ∈ ( 𝑣 ‘ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑡 ∈ 𝑤 → ( 𝑢 ‘ 𝑤 ) = ( 𝑣 ‘ 𝑤 ) ) ) } |
| 136 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆 ) ∧ 𝑓 𝑇 𝑔 ) ) → 𝑓 ∈ 𝑆 ) | |
| 137 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆 ) ∧ 𝑓 𝑇 𝑔 ) ) → 𝑔 ∈ 𝑆 ) | |
| 138 | simprr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆 ) ∧ 𝑓 𝑇 𝑔 ) ) → 𝑓 𝑇 𝑔 ) | |
| 139 | eqid | ⊢ ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑔 ‘ 𝑐 ) } = ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑔 ‘ 𝑐 ) } | |
| 140 | eqid | ⊢ OrdIso ( E , ( 𝑔 supp ∅ ) ) = OrdIso ( E , ( 𝑔 supp ∅ ) ) | |
| 141 | eqid | ⊢ seqω ( ( 𝑘 ∈ V , 𝑡 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝑔 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑔 ‘ ( OrdIso ( E , ( 𝑔 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑡 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑡 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝑔 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝑔 ‘ ( OrdIso ( E , ( 𝑔 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑡 ) ) , ∅ ) | |
| 142 | 1 112 113 135 136 137 138 139 140 141 | cantnflem1 | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆 ) ∧ 𝑓 𝑇 𝑔 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑓 ) ∈ ( ( 𝐴 CNF 𝐵 ) ‘ 𝑔 ) ) |
| 143 | fvex | ⊢ ( ( 𝐴 CNF 𝐵 ) ‘ 𝑔 ) ∈ V | |
| 144 | 143 | epeli | ⊢ ( ( ( 𝐴 CNF 𝐵 ) ‘ 𝑓 ) E ( ( 𝐴 CNF 𝐵 ) ‘ 𝑔 ) ↔ ( ( 𝐴 CNF 𝐵 ) ‘ 𝑓 ) ∈ ( ( 𝐴 CNF 𝐵 ) ‘ 𝑔 ) ) |
| 145 | 142 144 | sylibr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆 ) ∧ 𝑓 𝑇 𝑔 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑓 ) E ( ( 𝐴 CNF 𝐵 ) ‘ 𝑔 ) ) |
| 146 | 145 | expr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆 ) ) → ( 𝑓 𝑇 𝑔 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑓 ) E ( ( 𝐴 CNF 𝐵 ) ‘ 𝑔 ) ) ) |
| 147 | 146 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝑆 ∀ 𝑔 ∈ 𝑆 ( 𝑓 𝑇 𝑔 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑓 ) E ( ( 𝐴 CNF 𝐵 ) ‘ 𝑔 ) ) ) |
| 148 | soisoi | ⊢ ( ( ( 𝑇 Or 𝑆 ∧ E Po ( 𝐴 ↑o 𝐵 ) ) ∧ ( ( 𝐴 CNF 𝐵 ) : 𝑆 –onto→ ( 𝐴 ↑o 𝐵 ) ∧ ∀ 𝑓 ∈ 𝑆 ∀ 𝑔 ∈ 𝑆 ( 𝑓 𝑇 𝑔 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝑓 ) E ( ( 𝐴 CNF 𝐵 ) ‘ 𝑔 ) ) ) ) → ( 𝐴 CNF 𝐵 ) Isom 𝑇 , E ( 𝑆 , ( 𝐴 ↑o 𝐵 ) ) ) | |
| 149 | 5 13 111 147 148 | syl22anc | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) Isom 𝑇 , E ( 𝑆 , ( 𝐴 ↑o 𝐵 ) ) ) |