This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 26-May-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | anbi12d.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| anbi12d.2 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) | ||
| Assertion | anbi12d | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜃 ) ↔ ( 𝜒 ∧ 𝜏 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12d.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | anbi12d.2 | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) | |
| 3 | 1 | anbi1d | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜃 ) ↔ ( 𝜒 ∧ 𝜃 ) ) ) |
| 4 | 2 | anbi2d | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜃 ) ↔ ( 𝜒 ∧ 𝜏 ) ) ) |
| 5 | 3 4 | bitrd | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜃 ) ↔ ( 𝜒 ∧ 𝜏 ) ) ) |