This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F < G , then there is some z witnessing this, but we can say more and in fact there is a definable expression X that also witnesses F < G . (Contributed by Mario Carneiro, 25-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | ||
| oemapval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | ||
| oemapval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | ||
| oemapvali.r | ⊢ ( 𝜑 → 𝐹 𝑇 𝐺 ) | ||
| oemapvali.x | ⊢ 𝑋 = ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } | ||
| Assertion | oemapvali | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 5 | oemapval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | |
| 6 | oemapval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | |
| 7 | oemapvali.r | ⊢ ( 𝜑 → 𝐹 𝑇 𝐺 ) | |
| 8 | oemapvali.x | ⊢ 𝑋 = ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } | |
| 9 | 1 2 3 4 5 6 | oemapval | ⊢ ( 𝜑 → ( 𝐹 𝑇 𝐺 ↔ ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) |
| 10 | 7 9 | mpbid | ⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 11 | ssrab2 | ⊢ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ 𝐵 | |
| 12 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝐵 ∈ On ) |
| 13 | onss | ⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝐵 ⊆ On ) |
| 15 | 11 14 | sstrid | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ On ) |
| 16 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
| 17 | 6 16 | mpbid | ⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
| 18 | 17 | simprd | ⊢ ( 𝜑 → 𝐺 finSupp ∅ ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝐺 finSupp ∅ ) |
| 20 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) ) → 𝐵 ∈ On ) |
| 21 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) ) → 𝑐 ∈ 𝐵 ) | |
| 22 | 17 | simpld | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 23 | 22 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) ) → 𝐺 Fn 𝐵 ) |
| 25 | ne0i | ⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) → ( 𝐺 ‘ 𝑐 ) ≠ ∅ ) | |
| 26 | 25 | 3ad2ant3 | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) ) → ( 𝐺 ‘ 𝑐 ) ≠ ∅ ) |
| 27 | fvn0elsupp | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝑐 ∈ 𝐵 ) ∧ ( 𝐺 Fn 𝐵 ∧ ( 𝐺 ‘ 𝑐 ) ≠ ∅ ) ) → 𝑐 ∈ ( 𝐺 supp ∅ ) ) | |
| 28 | 20 21 24 26 27 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) ) → 𝑐 ∈ ( 𝐺 supp ∅ ) ) |
| 29 | 28 | rabssdv | ⊢ ( 𝜑 → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ ( 𝐺 supp ∅ ) ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ ( 𝐺 supp ∅ ) ) |
| 31 | fsuppimp | ⊢ ( 𝐺 finSupp ∅ → ( Fun 𝐺 ∧ ( 𝐺 supp ∅ ) ∈ Fin ) ) | |
| 32 | ssfi | ⊢ ( ( ( 𝐺 supp ∅ ) ∈ Fin ∧ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ ( 𝐺 supp ∅ ) ) → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ Fin ) | |
| 33 | 32 | ex | ⊢ ( ( 𝐺 supp ∅ ) ∈ Fin → ( { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ ( 𝐺 supp ∅ ) → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ Fin ) ) |
| 34 | 31 33 | simpl2im | ⊢ ( 𝐺 finSupp ∅ → ( { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ ( 𝐺 supp ∅ ) → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ Fin ) ) |
| 35 | 19 30 34 | sylc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ Fin ) |
| 36 | fveq2 | ⊢ ( 𝑐 = 𝑧 → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 37 | fveq2 | ⊢ ( 𝑐 = 𝑧 → ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 38 | 36 37 | eleq12d | ⊢ ( 𝑐 = 𝑧 → ( ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ) ) |
| 39 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝑧 ∈ 𝐵 ) | |
| 40 | simprrl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ) | |
| 41 | 38 39 40 | elrabd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝑧 ∈ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ) |
| 42 | 41 | ne0d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ≠ ∅ ) |
| 43 | ordunifi | ⊢ ( ( { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ On ∧ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ Fin ∧ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ≠ ∅ ) → ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ) | |
| 44 | 15 35 42 43 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ) |
| 45 | 8 44 | eqeltrid | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝑋 ∈ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ) |
| 46 | 11 45 | sselid | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝑋 ∈ 𝐵 ) |
| 47 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 48 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑋 ) ) | |
| 49 | 47 48 | eleq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ) ) |
| 50 | fveq2 | ⊢ ( 𝑐 = 𝑥 → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 51 | fveq2 | ⊢ ( 𝑐 = 𝑥 → ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 52 | 50 51 | eleq12d | ⊢ ( 𝑐 = 𝑥 → ( ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑥 ) ) ) |
| 53 | 52 | cbvrabv | ⊢ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } = { 𝑥 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐺 ‘ 𝑥 ) } |
| 54 | 49 53 | elrab2 | ⊢ ( 𝑋 ∈ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ) ) |
| 55 | 45 54 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ) ) |
| 56 | 55 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ) |
| 57 | simprrr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) | |
| 58 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝐴 ∈ On ) |
| 59 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 60 | 59 46 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ( 𝐺 ‘ 𝑋 ) ∈ 𝐴 ) |
| 61 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ 𝑋 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑋 ) ∈ On ) | |
| 62 | 58 60 61 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ( 𝐺 ‘ 𝑋 ) ∈ On ) |
| 63 | eloni | ⊢ ( ( 𝐺 ‘ 𝑋 ) ∈ On → Ord ( 𝐺 ‘ 𝑋 ) ) | |
| 64 | ordirr | ⊢ ( Ord ( 𝐺 ‘ 𝑋 ) → ¬ ( 𝐺 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ) | |
| 65 | 62 63 64 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ¬ ( 𝐺 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ) |
| 66 | nelneq | ⊢ ( ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ∧ ¬ ( 𝐺 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ) → ¬ ( 𝐹 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) | |
| 67 | 56 65 66 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ¬ ( 𝐹 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) |
| 68 | eleq2 | ⊢ ( 𝑤 = 𝑋 → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑋 ) ) | |
| 69 | fveq2 | ⊢ ( 𝑤 = 𝑋 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 70 | fveq2 | ⊢ ( 𝑤 = 𝑋 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑋 ) ) | |
| 71 | 69 70 | eqeq12d | ⊢ ( 𝑤 = 𝑋 → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) ) |
| 72 | 68 71 | imbi12d | ⊢ ( 𝑤 = 𝑋 → ( ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ↔ ( 𝑧 ∈ 𝑋 → ( 𝐹 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) ) ) |
| 73 | 72 57 46 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ( 𝑧 ∈ 𝑋 → ( 𝐹 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) ) |
| 74 | 67 73 | mtod | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ¬ 𝑧 ∈ 𝑋 ) |
| 75 | ssexg | ⊢ ( ( { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ 𝐵 ∧ 𝐵 ∈ On ) → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ V ) | |
| 76 | 11 12 75 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ V ) |
| 77 | ssonuni | ⊢ ( { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ V → ( { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ⊆ On → ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ On ) ) | |
| 78 | 76 15 77 | sylc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ∈ On ) |
| 79 | 8 78 | eqeltrid | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝑋 ∈ On ) |
| 80 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ On ) | |
| 81 | 12 39 80 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝑧 ∈ On ) |
| 82 | ontri1 | ⊢ ( ( 𝑋 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑋 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑋 ) ) | |
| 83 | 79 81 82 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ( 𝑋 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑋 ) ) |
| 84 | 74 83 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝑋 ⊆ 𝑧 ) |
| 85 | elssuni | ⊢ ( 𝑧 ∈ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } → 𝑧 ⊆ ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } ) | |
| 86 | 85 8 | sseqtrrdi | ⊢ ( 𝑧 ∈ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } → 𝑧 ⊆ 𝑋 ) |
| 87 | 41 86 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝑧 ⊆ 𝑋 ) |
| 88 | 84 87 | eqssd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → 𝑋 = 𝑧 ) |
| 89 | eleq1 | ⊢ ( 𝑋 = 𝑧 → ( 𝑋 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤 ) ) | |
| 90 | 89 | imbi1d | ⊢ ( 𝑋 = 𝑧 → ( ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ↔ ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 91 | 90 | ralbidv | ⊢ ( 𝑋 = 𝑧 → ( ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 92 | 88 91 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ( ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 93 | 57 92 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 94 | 46 56 93 | 3jca | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐺 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) ) → ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 95 | 10 94 | rexlimddv | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |