This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the set of finitely supported functions from B to A . (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| Assertion | cantnfs | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | eqid | ⊢ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } | |
| 5 | 4 2 3 | cantnfdm | ⊢ ( 𝜑 → dom ( 𝐴 CNF 𝐵 ) = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) |
| 6 | 1 5 | eqtrid | ⊢ ( 𝜑 → 𝑆 = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) |
| 7 | 6 | eleq2d | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ 𝐹 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) ) |
| 8 | breq1 | ⊢ ( 𝑔 = 𝐹 → ( 𝑔 finSupp ∅ ↔ 𝐹 finSupp ∅ ) ) | |
| 9 | 8 | elrab | ⊢ ( 𝐹 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↔ ( 𝐹 ∈ ( 𝐴 ↑m 𝐵 ) ∧ 𝐹 finSupp ∅ ) ) |
| 10 | 7 9 | bitrdi | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 ∈ ( 𝐴 ↑m 𝐵 ) ∧ 𝐹 finSupp ∅ ) ) ) |
| 11 | 2 3 | elmapd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝐹 : 𝐵 ⟶ 𝐴 ) ) |
| 12 | 11 | anbi1d | ⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝐴 ↑m 𝐵 ) ∧ 𝐹 finSupp ∅ ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) ) |
| 13 | 10 12 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐵 ⟶ 𝐴 ∧ 𝐹 finSupp ∅ ) ) ) |