This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 22-Mar-2015) (Revised by AV, 28-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppss2.n | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → 𝐵 = 𝑍 ) | |
| suppss2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| Assertion | suppss2 | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppss2.n | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → 𝐵 = 𝑍 ) | |
| 2 | suppss2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) | |
| 4 | 2 | adantl | ⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → 𝐴 ∈ 𝑉 ) |
| 5 | simpl | ⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → 𝑍 ∈ V ) | |
| 6 | 3 4 5 | mptsuppdifd | ⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) = { 𝑘 ∈ 𝐴 ∣ 𝐵 ∈ ( V ∖ { 𝑍 } ) } ) |
| 7 | eldifsni | ⊢ ( 𝐵 ∈ ( V ∖ { 𝑍 } ) → 𝐵 ≠ 𝑍 ) | |
| 8 | eldif | ⊢ ( 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ↔ ( 𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊 ) ) | |
| 9 | 1 | adantll | ⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → 𝐵 = 𝑍 ) |
| 10 | 8 9 | sylan2br | ⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ ( 𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊 ) ) → 𝐵 = 𝑍 ) |
| 11 | 10 | expr | ⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑘 ∈ 𝐴 ) → ( ¬ 𝑘 ∈ 𝑊 → 𝐵 = 𝑍 ) ) |
| 12 | 11 | necon1ad | ⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 ≠ 𝑍 → 𝑘 ∈ 𝑊 ) ) |
| 13 | 7 12 | syl5 | ⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 ∈ ( V ∖ { 𝑍 } ) → 𝑘 ∈ 𝑊 ) ) |
| 14 | 13 | 3impia | ⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ( V ∖ { 𝑍 } ) ) → 𝑘 ∈ 𝑊 ) |
| 15 | 14 | rabssdv | ⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → { 𝑘 ∈ 𝐴 ∣ 𝐵 ∈ ( V ∖ { 𝑍 } ) } ⊆ 𝑊 ) |
| 16 | 6 15 | eqsstrd | ⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ 𝑊 ) |
| 17 | 16 | ex | ⊢ ( 𝑍 ∈ V → ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ 𝑊 ) ) |
| 18 | id | ⊢ ( ¬ 𝑍 ∈ V → ¬ 𝑍 ∈ V ) | |
| 19 | 18 | intnand | ⊢ ( ¬ 𝑍 ∈ V → ¬ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∈ V ∧ 𝑍 ∈ V ) ) |
| 20 | supp0prc | ⊢ ( ¬ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) = ∅ ) | |
| 21 | 19 20 | syl | ⊢ ( ¬ 𝑍 ∈ V → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) = ∅ ) |
| 22 | 0ss | ⊢ ∅ ⊆ 𝑊 | |
| 23 | 21 22 | eqsstrdi | ⊢ ( ¬ 𝑍 ∈ V → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ 𝑊 ) |
| 24 | 23 | a1d | ⊢ ( ¬ 𝑍 ∈ V → ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ 𝑊 ) ) |
| 25 | 17 24 | pm2.61i | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 𝑍 ) ⊆ 𝑊 ) |