This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal class is either its union or the successor of its union. If we adopt the view that zero is a limit ordinal, this means every ordinal class is either a limit or a successor. (Contributed by NM, 13-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orduniorsuc | ⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orduniss | ⊢ ( Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴 ) | |
| 2 | orduni | ⊢ ( Ord 𝐴 → Ord ∪ 𝐴 ) | |
| 3 | ordelssne | ⊢ ( ( Ord ∪ 𝐴 ∧ Ord 𝐴 ) → ( ∪ 𝐴 ∈ 𝐴 ↔ ( ∪ 𝐴 ⊆ 𝐴 ∧ ∪ 𝐴 ≠ 𝐴 ) ) ) | |
| 4 | 2 3 | mpancom | ⊢ ( Ord 𝐴 → ( ∪ 𝐴 ∈ 𝐴 ↔ ( ∪ 𝐴 ⊆ 𝐴 ∧ ∪ 𝐴 ≠ 𝐴 ) ) ) |
| 5 | 4 | biimprd | ⊢ ( Ord 𝐴 → ( ( ∪ 𝐴 ⊆ 𝐴 ∧ ∪ 𝐴 ≠ 𝐴 ) → ∪ 𝐴 ∈ 𝐴 ) ) |
| 6 | 1 5 | mpand | ⊢ ( Ord 𝐴 → ( ∪ 𝐴 ≠ 𝐴 → ∪ 𝐴 ∈ 𝐴 ) ) |
| 7 | ordsucss | ⊢ ( Ord 𝐴 → ( ∪ 𝐴 ∈ 𝐴 → suc ∪ 𝐴 ⊆ 𝐴 ) ) | |
| 8 | 6 7 | syld | ⊢ ( Ord 𝐴 → ( ∪ 𝐴 ≠ 𝐴 → suc ∪ 𝐴 ⊆ 𝐴 ) ) |
| 9 | ordsucuni | ⊢ ( Ord 𝐴 → 𝐴 ⊆ suc ∪ 𝐴 ) | |
| 10 | 8 9 | jctild | ⊢ ( Ord 𝐴 → ( ∪ 𝐴 ≠ 𝐴 → ( 𝐴 ⊆ suc ∪ 𝐴 ∧ suc ∪ 𝐴 ⊆ 𝐴 ) ) ) |
| 11 | df-ne | ⊢ ( 𝐴 ≠ ∪ 𝐴 ↔ ¬ 𝐴 = ∪ 𝐴 ) | |
| 12 | necom | ⊢ ( 𝐴 ≠ ∪ 𝐴 ↔ ∪ 𝐴 ≠ 𝐴 ) | |
| 13 | 11 12 | bitr3i | ⊢ ( ¬ 𝐴 = ∪ 𝐴 ↔ ∪ 𝐴 ≠ 𝐴 ) |
| 14 | eqss | ⊢ ( 𝐴 = suc ∪ 𝐴 ↔ ( 𝐴 ⊆ suc ∪ 𝐴 ∧ suc ∪ 𝐴 ⊆ 𝐴 ) ) | |
| 15 | 10 13 14 | 3imtr4g | ⊢ ( Ord 𝐴 → ( ¬ 𝐴 = ∪ 𝐴 → 𝐴 = suc ∪ 𝐴 ) ) |
| 16 | 15 | orrd | ⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴 ) ) |