This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction from equality to equivalence of membership. (Contributed by NM, 27-Dec-1993) Reduce dependencies on axioms. (Revised by Wolf Lammen, 5-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eleq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| Assertion | eleq2d | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | dfcleq | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 4 | anbi2 | ⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵 ) ) ) | |
| 5 | 4 | alexbii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ( ∃ 𝑥 ( 𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → ( ∃ 𝑥 ( 𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 7 | dfclel | ⊢ ( 𝐶 ∈ 𝐴 ↔ ∃ 𝑥 ( 𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴 ) ) | |
| 8 | dfclel | ⊢ ( 𝐶 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 9 | 6 7 8 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝐴 ↔ 𝐶 ∈ 𝐵 ) ) |