This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| cantnfcl.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | ||
| cantnfcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | ||
| cantnfval.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | ||
| Assertion | cantnfval | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( 𝐻 ‘ dom 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | cantnfcl.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | |
| 5 | cantnfcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | |
| 6 | cantnfval.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 7 | eqid | ⊢ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } | |
| 8 | 7 2 3 | cantnffval | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) = ( 𝑓 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ) |
| 9 | 8 | fveq1d | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( 𝑓 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ‘ 𝐹 ) ) |
| 10 | 7 2 3 | cantnfdm | ⊢ ( 𝜑 → dom ( 𝐴 CNF 𝐵 ) = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) |
| 11 | 1 10 | eqtrid | ⊢ ( 𝜑 → 𝑆 = { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) |
| 12 | 5 11 | eleqtrd | ⊢ ( 𝜑 → 𝐹 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ) |
| 13 | ovex | ⊢ ( 𝑓 supp ∅ ) ∈ V | |
| 14 | eqid | ⊢ OrdIso ( E , ( 𝑓 supp ∅ ) ) = OrdIso ( E , ( 𝑓 supp ∅ ) ) | |
| 15 | 14 | oiexg | ⊢ ( ( 𝑓 supp ∅ ) ∈ V → OrdIso ( E , ( 𝑓 supp ∅ ) ) ∈ V ) |
| 16 | 13 15 | mp1i | ⊢ ( 𝑓 = 𝐹 → OrdIso ( E , ( 𝑓 supp ∅ ) ) ∈ V ) |
| 17 | simpr | ⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) | |
| 18 | oveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 supp ∅ ) = ( 𝐹 supp ∅ ) ) | |
| 19 | 18 | adantr | ⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ( 𝑓 supp ∅ ) = ( 𝐹 supp ∅ ) ) |
| 20 | oieq2 | ⊢ ( ( 𝑓 supp ∅ ) = ( 𝐹 supp ∅ ) → OrdIso ( E , ( 𝑓 supp ∅ ) ) = OrdIso ( E , ( 𝐹 supp ∅ ) ) ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → OrdIso ( E , ( 𝑓 supp ∅ ) ) = OrdIso ( E , ( 𝐹 supp ∅ ) ) ) |
| 22 | 17 21 | eqtrd | ⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ℎ = OrdIso ( E , ( 𝐹 supp ∅ ) ) ) |
| 23 | 22 4 | eqtr4di | ⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ℎ = 𝐺 ) |
| 24 | 23 | fveq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ( ℎ ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 25 | 24 | oveq2d | ⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) = ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ) |
| 26 | simpl | ⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → 𝑓 = 𝐹 ) | |
| 27 | 26 24 | fveq12d | ⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 28 | 25 27 | oveq12d | ⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 29 | 28 | oveq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) |
| 30 | 29 | mpoeq3dv | ⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) = ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ) |
| 31 | eqid | ⊢ ∅ = ∅ | |
| 32 | seqomeq12 | ⊢ ( ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) = ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ∧ ∅ = ∅ ) → seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ) | |
| 33 | 30 31 32 | sylancl | ⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ) |
| 34 | 33 6 | eqtr4di | ⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = 𝐻 ) |
| 35 | 23 | dmeqd | ⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → dom ℎ = dom 𝐺 ) |
| 36 | 34 35 | fveq12d | ⊢ ( ( 𝑓 = 𝐹 ∧ ℎ = OrdIso ( E , ( 𝑓 supp ∅ ) ) ) → ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) = ( 𝐻 ‘ dom 𝐺 ) ) |
| 37 | 16 36 | csbied | ⊢ ( 𝑓 = 𝐹 → ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) = ( 𝐻 ‘ dom 𝐺 ) ) |
| 38 | eqid | ⊢ ( 𝑓 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) = ( 𝑓 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) | |
| 39 | fvex | ⊢ ( 𝐻 ‘ dom 𝐺 ) ∈ V | |
| 40 | 37 38 39 | fvmpt | ⊢ ( 𝐹 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } → ( ( 𝑓 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ‘ 𝐹 ) = ( 𝐻 ‘ dom 𝐺 ) ) |
| 41 | 12 40 | syl | ⊢ ( 𝜑 → ( ( 𝑓 ∈ { 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ∣ 𝑔 finSupp ∅ } ↦ ⦋ OrdIso ( E , ( 𝑓 supp ∅ ) ) / ℎ ⦌ ( seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( ℎ ‘ 𝑘 ) ) ·o ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) ‘ dom ℎ ) ) ‘ 𝐹 ) = ( 𝐻 ‘ dom 𝐺 ) ) |
| 42 | 9 41 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( 𝐻 ‘ dom 𝐺 ) ) |