This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is created by adding a single term ( FX ) = Y to G , where X is larger than any element of the support of G , then F is also a finitely supported function and it is assigned the value ( ( A ^o X ) .o Y ) +o z where z is the value of G . (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 1-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| cantnfp1.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | ||
| cantnfp1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| cantnfp1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | ||
| cantnfp1.s | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝑋 ) | ||
| cantnfp1.f | ⊢ 𝐹 = ( 𝑡 ∈ 𝐵 ↦ if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) ) | ||
| Assertion | cantnfp1 | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ∧ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | cantnfp1.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | |
| 5 | cantnfp1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | cantnfp1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | |
| 7 | cantnfp1.s | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝑋 ) | |
| 8 | cantnfp1.f | ⊢ 𝐹 = ( 𝑡 ∈ 𝐵 ↦ if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) ) | |
| 9 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ On ) | |
| 10 | 3 5 9 | syl2anc | ⊢ ( 𝜑 → 𝑋 ∈ On ) |
| 11 | eloni | ⊢ ( 𝑋 ∈ On → Ord 𝑋 ) | |
| 12 | ordirr | ⊢ ( Ord 𝑋 → ¬ 𝑋 ∈ 𝑋 ) | |
| 13 | 10 11 12 | 3syl | ⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑋 ) |
| 14 | fvex | ⊢ ( 𝐺 ‘ 𝑋 ) ∈ V | |
| 15 | dif1o | ⊢ ( ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ↔ ( ( 𝐺 ‘ 𝑋 ) ∈ V ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) | |
| 16 | 14 15 | mpbiran | ⊢ ( ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ↔ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) |
| 17 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
| 18 | 4 17 | mpbid | ⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
| 19 | 18 | simpld | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 20 | 19 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
| 21 | 0ex | ⊢ ∅ ∈ V | |
| 22 | 21 | a1i | ⊢ ( 𝜑 → ∅ ∈ V ) |
| 23 | elsuppfn | ⊢ ( ( 𝐺 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) ) | |
| 24 | 20 3 22 23 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) ) |
| 25 | 16 | bicomi | ⊢ ( ( 𝐺 ‘ 𝑋 ) ≠ ∅ ↔ ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ) |
| 26 | 25 | a1i | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ≠ ∅ ↔ ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ) ) |
| 27 | 26 | anbi2d | ⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ) ) ) |
| 28 | 24 27 | bitrd | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ) ) ) |
| 29 | 7 | sseld | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐺 supp ∅ ) → 𝑋 ∈ 𝑋 ) ) |
| 30 | 28 29 | sylbird | ⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ) → 𝑋 ∈ 𝑋 ) ) |
| 31 | 5 30 | mpand | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) → 𝑋 ∈ 𝑋 ) ) |
| 32 | 16 31 | biimtrrid | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ≠ ∅ → 𝑋 ∈ 𝑋 ) ) |
| 33 | 32 | necon1bd | ⊢ ( 𝜑 → ( ¬ 𝑋 ∈ 𝑋 → ( 𝐺 ‘ 𝑋 ) = ∅ ) ) |
| 34 | 13 33 | mpd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) = ∅ ) |
| 35 | 34 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑌 = ∅ ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑡 = 𝑋 ) → ( 𝐺 ‘ 𝑋 ) = ∅ ) |
| 36 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑌 = ∅ ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑡 = 𝑋 ) → 𝑡 = 𝑋 ) | |
| 37 | 36 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑌 = ∅ ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑡 = 𝑋 ) → ( 𝐺 ‘ 𝑡 ) = ( 𝐺 ‘ 𝑋 ) ) |
| 38 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑌 = ∅ ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑡 = 𝑋 ) → 𝑌 = ∅ ) | |
| 39 | 35 37 38 | 3eqtr4rd | ⊢ ( ( ( ( 𝜑 ∧ 𝑌 = ∅ ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑡 = 𝑋 ) → 𝑌 = ( 𝐺 ‘ 𝑡 ) ) |
| 40 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝑌 = ∅ ) ∧ 𝑡 ∈ 𝐵 ) ∧ ¬ 𝑡 = 𝑋 ) → ( 𝐺 ‘ 𝑡 ) = ( 𝐺 ‘ 𝑡 ) ) | |
| 41 | 39 40 | ifeqda | ⊢ ( ( ( 𝜑 ∧ 𝑌 = ∅ ) ∧ 𝑡 ∈ 𝐵 ) → if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) = ( 𝐺 ‘ 𝑡 ) ) |
| 42 | 41 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → ( 𝑡 ∈ 𝐵 ↦ if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝐵 ↦ ( 𝐺 ‘ 𝑡 ) ) ) |
| 43 | 8 42 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → 𝐹 = ( 𝑡 ∈ 𝐵 ↦ ( 𝐺 ‘ 𝑡 ) ) ) |
| 44 | 19 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑡 ∈ 𝐵 ↦ ( 𝐺 ‘ 𝑡 ) ) ) |
| 45 | 44 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → 𝐺 = ( 𝑡 ∈ 𝐵 ↦ ( 𝐺 ‘ 𝑡 ) ) ) |
| 46 | 43 45 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → 𝐹 = 𝐺 ) |
| 47 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → 𝐺 ∈ 𝑆 ) |
| 48 | 46 47 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → 𝐹 ∈ 𝑆 ) |
| 49 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) | |
| 50 | 2 3 49 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 51 | 1 2 3 | cantnff | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) : 𝑆 ⟶ ( 𝐴 ↑o 𝐵 ) ) |
| 52 | 51 4 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ∈ ( 𝐴 ↑o 𝐵 ) ) |
| 53 | onelon | ⊢ ( ( ( 𝐴 ↑o 𝐵 ) ∈ On ∧ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ∈ ( 𝐴 ↑o 𝐵 ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ∈ On ) | |
| 54 | 50 52 53 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ∈ On ) |
| 55 | 54 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ∈ On ) |
| 56 | oa0r | ⊢ ( ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ∈ On → ( ∅ +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) | |
| 57 | 55 56 | syl | ⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → ( ∅ +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) = ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) |
| 58 | oveq2 | ⊢ ( 𝑌 = ∅ → ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) = ( ( 𝐴 ↑o 𝑋 ) ·o ∅ ) ) | |
| 59 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ On ) → ( 𝐴 ↑o 𝑋 ) ∈ On ) | |
| 60 | 2 10 59 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
| 61 | om0 | ⊢ ( ( 𝐴 ↑o 𝑋 ) ∈ On → ( ( 𝐴 ↑o 𝑋 ) ·o ∅ ) = ∅ ) | |
| 62 | 60 61 | syl | ⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o ∅ ) = ∅ ) |
| 63 | 58 62 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) = ∅ ) |
| 64 | 63 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) = ( ∅ +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) |
| 65 | 46 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) |
| 66 | 57 64 65 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) |
| 67 | 48 66 | jca | ⊢ ( ( 𝜑 ∧ 𝑌 = ∅ ) → ( 𝐹 ∈ 𝑆 ∧ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) ) |
| 68 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → 𝐴 ∈ On ) |
| 69 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → 𝐵 ∈ On ) |
| 70 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → 𝐺 ∈ 𝑆 ) |
| 71 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → 𝑋 ∈ 𝐵 ) |
| 72 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → 𝑌 ∈ 𝐴 ) |
| 73 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → ( 𝐺 supp ∅ ) ⊆ 𝑋 ) |
| 74 | 1 68 69 70 71 72 73 8 | cantnfp1lem1 | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → 𝐹 ∈ 𝑆 ) |
| 75 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ 𝑌 ∈ 𝐴 ) → 𝑌 ∈ On ) | |
| 76 | 2 6 75 | syl2anc | ⊢ ( 𝜑 → 𝑌 ∈ On ) |
| 77 | on0eln0 | ⊢ ( 𝑌 ∈ On → ( ∅ ∈ 𝑌 ↔ 𝑌 ≠ ∅ ) ) | |
| 78 | 76 77 | syl | ⊢ ( 𝜑 → ( ∅ ∈ 𝑌 ↔ 𝑌 ≠ ∅ ) ) |
| 79 | 78 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → ∅ ∈ 𝑌 ) |
| 80 | eqid | ⊢ OrdIso ( E , ( 𝐹 supp ∅ ) ) = OrdIso ( E , ( 𝐹 supp ∅ ) ) | |
| 81 | eqid | ⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝐹 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( OrdIso ( E , ( 𝐹 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝐹 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( OrdIso ( E , ( 𝐹 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 82 | eqid | ⊢ OrdIso ( E , ( 𝐺 supp ∅ ) ) = OrdIso ( E , ( 𝐺 supp ∅ ) ) | |
| 83 | eqid | ⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝐺 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝐺 ‘ ( OrdIso ( E , ( 𝐺 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝐺 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝐺 ‘ ( OrdIso ( E , ( 𝐺 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 84 | 1 68 69 70 71 72 73 8 79 80 81 82 83 | cantnfp1lem3 | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) |
| 85 | 74 84 | jca | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ∅ ) → ( 𝐹 ∈ 𝑆 ∧ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) ) |
| 86 | 67 85 | pm2.61dane | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ∧ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) ) |