This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Part of Proposition 7.23 of TakeutiZaring p. 41 (generalized). Lemma 1.7 of Schloeder p. 1. (Contributed by NM, 25-Mar-1995) (Proof shortened by Scott Fenton, 20-Feb-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sucidg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | olci | ⊢ ( 𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴 ) |
| 3 | elsucg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ suc 𝐴 ↔ ( 𝐴 ∈ 𝐴 ∨ 𝐴 = 𝐴 ) ) ) | |
| 4 | 2 3 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴 ) |