This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the recursive function H at a successor. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| cantnfcl.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | ||
| cantnfcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | ||
| cantnfval.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | ||
| Assertion | cantnfsuc | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ω ) → ( 𝐻 ‘ suc 𝐾 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝐾 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) ) +o ( 𝐻 ‘ 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | cantnfcl.g | ⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | |
| 5 | cantnfcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | |
| 6 | cantnfval.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 7 | 6 | seqomsuc | ⊢ ( 𝐾 ∈ ω → ( 𝐻 ‘ suc 𝐾 ) = ( 𝐾 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( 𝐻 ‘ 𝐾 ) ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ω ) → ( 𝐻 ‘ suc 𝐾 ) = ( 𝐾 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( 𝐻 ‘ 𝐾 ) ) ) |
| 9 | elex | ⊢ ( 𝐾 ∈ ω → 𝐾 ∈ V ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ω ) → 𝐾 ∈ V ) |
| 11 | fvex | ⊢ ( 𝐻 ‘ 𝐾 ) ∈ V | |
| 12 | simpl | ⊢ ( ( 𝑢 = 𝐾 ∧ 𝑣 = ( 𝐻 ‘ 𝐾 ) ) → 𝑢 = 𝐾 ) | |
| 13 | 12 | fveq2d | ⊢ ( ( 𝑢 = 𝐾 ∧ 𝑣 = ( 𝐻 ‘ 𝐾 ) ) → ( 𝐺 ‘ 𝑢 ) = ( 𝐺 ‘ 𝐾 ) ) |
| 14 | 13 | oveq2d | ⊢ ( ( 𝑢 = 𝐾 ∧ 𝑣 = ( 𝐻 ‘ 𝐾 ) ) → ( 𝐴 ↑o ( 𝐺 ‘ 𝑢 ) ) = ( 𝐴 ↑o ( 𝐺 ‘ 𝐾 ) ) ) |
| 15 | 13 | fveq2d | ⊢ ( ( 𝑢 = 𝐾 ∧ 𝑣 = ( 𝐻 ‘ 𝐾 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) ) |
| 16 | 14 15 | oveq12d | ⊢ ( ( 𝑢 = 𝐾 ∧ 𝑣 = ( 𝐻 ‘ 𝐾 ) ) → ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ 𝐾 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) ) ) |
| 17 | simpr | ⊢ ( ( 𝑢 = 𝐾 ∧ 𝑣 = ( 𝐻 ‘ 𝐾 ) ) → 𝑣 = ( 𝐻 ‘ 𝐾 ) ) | |
| 18 | 16 17 | oveq12d | ⊢ ( ( 𝑢 = 𝐾 ∧ 𝑣 = ( 𝐻 ‘ 𝐾 ) ) → ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑣 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝐾 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) ) +o ( 𝐻 ‘ 𝐾 ) ) ) |
| 19 | fveq2 | ⊢ ( 𝑘 = 𝑢 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑢 ) ) | |
| 20 | 19 | oveq2d | ⊢ ( 𝑘 = 𝑢 → ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) = ( 𝐴 ↑o ( 𝐺 ‘ 𝑢 ) ) ) |
| 21 | 19 | fveq2d | ⊢ ( 𝑘 = 𝑢 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) |
| 22 | 20 21 | oveq12d | ⊢ ( 𝑘 = 𝑢 → ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) = ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) ) |
| 23 | 22 | oveq1d | ⊢ ( 𝑘 = 𝑢 → ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑧 ) ) |
| 24 | oveq2 | ⊢ ( 𝑧 = 𝑣 → ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑧 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑣 ) ) | |
| 25 | 23 24 | cbvmpov | ⊢ ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) = ( 𝑢 ∈ V , 𝑣 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑢 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑢 ) ) ) +o 𝑣 ) ) |
| 26 | ovex | ⊢ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝐾 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) ) +o ( 𝐻 ‘ 𝐾 ) ) ∈ V | |
| 27 | 18 25 26 | ovmpoa | ⊢ ( ( 𝐾 ∈ V ∧ ( 𝐻 ‘ 𝐾 ) ∈ V ) → ( 𝐾 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( 𝐻 ‘ 𝐾 ) ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝐾 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) ) +o ( 𝐻 ‘ 𝐾 ) ) ) |
| 28 | 10 11 27 | sylancl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ω ) → ( 𝐾 ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) +o 𝑧 ) ) ( 𝐻 ‘ 𝐾 ) ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝐾 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) ) +o ( 𝐻 ‘ 𝐾 ) ) ) |
| 29 | 8 28 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ ω ) → ( 𝐻 ‘ suc 𝐾 ) = ( ( ( 𝐴 ↑o ( 𝐺 ‘ 𝐾 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐾 ) ) ) +o ( 𝐻 ‘ 𝐾 ) ) ) |