This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnf . (Contributed by Mario Carneiro, 4-Jun-2015) (Revised by AV, 2-Jul-2019) (Proof shortened by AV, 4-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | ||
| oemapval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | ||
| oemapval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | ||
| oemapvali.r | ⊢ ( 𝜑 → 𝐹 𝑇 𝐺 ) | ||
| oemapvali.x | ⊢ 𝑋 = ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } | ||
| cantnflem1.o | ⊢ 𝑂 = OrdIso ( E , ( 𝐺 supp ∅ ) ) | ||
| Assertion | cantnflem1c | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑥 ∈ ( 𝐺 supp ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 5 | oemapval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) | |
| 6 | oemapval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | |
| 7 | oemapvali.r | ⊢ ( 𝜑 → 𝐹 𝑇 𝐺 ) | |
| 8 | oemapvali.x | ⊢ 𝑋 = ∪ { 𝑐 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑐 ) ∈ ( 𝐺 ‘ 𝑐 ) } | |
| 9 | cantnflem1.o | ⊢ 𝑂 = OrdIso ( E , ( 𝐺 supp ∅ ) ) | |
| 10 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝐵 ∈ On ) |
| 11 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑥 ∈ 𝐵 ) | |
| 12 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
| 13 | 6 12 | mpbid | ⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
| 14 | 13 | simpld | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 15 | 14 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
| 16 | 15 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝐺 Fn 𝐵 ) |
| 17 | 1 2 3 4 5 6 7 8 9 | cantnflem1b | ⊢ ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) → 𝑋 ⊆ ( 𝑂 ‘ 𝑢 ) ) |
| 18 | 17 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑋 ⊆ ( 𝑂 ‘ 𝑢 ) ) |
| 19 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) | |
| 20 | 1 2 3 4 5 6 7 8 | oemapvali | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐺 ‘ 𝑋 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 21 | 20 | simp1d | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 22 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ On ) | |
| 23 | 3 21 22 | syl2anc | ⊢ ( 𝜑 → 𝑋 ∈ On ) |
| 24 | 23 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑋 ∈ On ) |
| 25 | onss | ⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) | |
| 26 | 3 25 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ On ) |
| 27 | 26 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) |
| 28 | 27 | ad4ant13 | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑥 ∈ On ) |
| 29 | ontr2 | ⊢ ( ( 𝑋 ∈ On ∧ 𝑥 ∈ On ) → ( ( 𝑋 ⊆ ( 𝑂 ‘ 𝑢 ) ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) → 𝑋 ∈ 𝑥 ) ) | |
| 30 | 24 28 29 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( ( 𝑋 ⊆ ( 𝑂 ‘ 𝑢 ) ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) → 𝑋 ∈ 𝑥 ) ) |
| 31 | 18 19 30 | mp2and | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑋 ∈ 𝑥 ) |
| 32 | eleq2w | ⊢ ( 𝑤 = 𝑥 → ( 𝑋 ∈ 𝑤 ↔ 𝑋 ∈ 𝑥 ) ) | |
| 33 | fveq2 | ⊢ ( 𝑤 = 𝑥 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 34 | fveq2 | ⊢ ( 𝑤 = 𝑥 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 35 | 33 34 | eqeq12d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 36 | 32 35 | imbi12d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ↔ ( 𝑋 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 37 | 20 | simp3d | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 38 | 37 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ∀ 𝑤 ∈ 𝐵 ( 𝑋 ∈ 𝑤 → ( 𝐹 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 39 | 36 38 11 | rspcdva | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝑋 ∈ 𝑥 → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 40 | 31 39 | mpd | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 41 | simprl | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) ≠ ∅ ) | |
| 42 | 40 41 | eqnetrrd | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ≠ ∅ ) |
| 43 | fvn0elsupp | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐺 Fn 𝐵 ∧ ( 𝐺 ‘ 𝑥 ) ≠ ∅ ) ) → 𝑥 ∈ ( 𝐺 supp ∅ ) ) | |
| 44 | 10 11 16 42 43 | syl22anc | ⊢ ( ( ( ( 𝜑 ∧ ( suc 𝑢 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ⊆ 𝑢 ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝐹 ‘ 𝑥 ) ≠ ∅ ∧ ( 𝑂 ‘ 𝑢 ) ∈ 𝑥 ) ) → 𝑥 ∈ ( 𝐺 supp ∅ ) ) |