This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: syl2anr with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016) (Proof shortened by Wolf Lammen, 28-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl2an2r.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| syl2an2r.2 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) | ||
| syl2an2r.3 | ⊢ ( ( 𝜓 ∧ 𝜃 ) → 𝜏 ) | ||
| Assertion | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an2r.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | syl2an2r.2 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) | |
| 3 | syl2an2r.3 | ⊢ ( ( 𝜓 ∧ 𝜃 ) → 𝜏 ) | |
| 4 | 1 3 | sylan | ⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜏 ) |
| 5 | 2 4 | syldan | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜏 ) |