This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itg2mono . We show that for any constant t less than one, t x. S.1 H is less than S , and so S.1 H <_ S , which is one half of the equality in itg2mono . Consider the sequence A ( n ) = { x | t x. H <_ F ( n ) } . This is an increasing sequence of measurable sets whose union is RR , and so ` H |`A ( n ) has an integral which equals S.1 H in the limit, by itg1climres . Then by taking the limit in ` ( t x. H ) |`A ( n ) <_ F ( n ) , we get t x. S.1 H <_ S as desired. (Contributed by Mario Carneiro, 16-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2mono.1 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) | |
| itg2mono.2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ MblFn ) | ||
| itg2mono.3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | ||
| itg2mono.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | ||
| itg2mono.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) | ||
| itg2mono.6 | ⊢ 𝑆 = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) | ||
| itg2mono.7 | ⊢ ( 𝜑 → 𝑇 ∈ ( 0 (,) 1 ) ) | ||
| itg2mono.8 | ⊢ ( 𝜑 → 𝐻 ∈ dom ∫1 ) | ||
| itg2mono.9 | ⊢ ( 𝜑 → 𝐻 ∘r ≤ 𝐺 ) | ||
| itg2mono.10 | ⊢ ( 𝜑 → 𝑆 ∈ ℝ ) | ||
| itg2mono.11 | ⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) | ||
| Assertion | itg2monolem1 | ⊢ ( 𝜑 → ( 𝑇 · ( ∫1 ‘ 𝐻 ) ) ≤ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2mono.1 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) | |
| 2 | itg2mono.2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ MblFn ) | |
| 3 | itg2mono.3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 4 | itg2mono.4 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 5 | itg2mono.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) | |
| 6 | itg2mono.6 | ⊢ 𝑆 = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) | |
| 7 | itg2mono.7 | ⊢ ( 𝜑 → 𝑇 ∈ ( 0 (,) 1 ) ) | |
| 8 | itg2mono.8 | ⊢ ( 𝜑 → 𝐻 ∈ dom ∫1 ) | |
| 9 | itg2mono.9 | ⊢ ( 𝜑 → 𝐻 ∘r ≤ 𝐺 ) | |
| 10 | itg2mono.10 | ⊢ ( 𝜑 → 𝑆 ∈ ℝ ) | |
| 11 | itg2mono.11 | ⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) | |
| 12 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 13 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 14 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) | |
| 15 | readdcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) | |
| 16 | 15 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
| 17 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 18 | fss | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | |
| 19 | 3 17 18 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 20 | 0xr | ⊢ 0 ∈ ℝ* | |
| 21 | 1xr | ⊢ 1 ∈ ℝ* | |
| 22 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( 𝑇 ∈ ( 0 (,) 1 ) ↔ ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ∧ 𝑇 < 1 ) ) ) | |
| 23 | 20 21 22 | mp2an | ⊢ ( 𝑇 ∈ ( 0 (,) 1 ) ↔ ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ∧ 𝑇 < 1 ) ) |
| 24 | 7 23 | sylib | ⊢ ( 𝜑 → ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ∧ 𝑇 < 1 ) ) |
| 25 | 24 | simp1d | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 26 | 25 | renegcld | ⊢ ( 𝜑 → - 𝑇 ∈ ℝ ) |
| 27 | 8 26 | i1fmulc | ⊢ ( 𝜑 → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ∈ dom ∫1 ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ∈ dom ∫1 ) |
| 29 | i1ff | ⊢ ( ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ∈ dom ∫1 → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) : ℝ ⟶ ℝ ) | |
| 30 | 28 29 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) : ℝ ⟶ ℝ ) |
| 31 | reex | ⊢ ℝ ∈ V | |
| 32 | 31 | a1i | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ℝ ∈ V ) |
| 33 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 34 | 16 19 30 32 32 33 | off | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) : ℝ ⟶ ℝ ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) : ℝ ⟶ ℝ ) |
| 36 | 35 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) Fn ℝ ) |
| 37 | elpreima | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) Fn ℝ → ( 𝑥 ∈ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ) ) ) | |
| 38 | 36 37 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ) ) ) |
| 39 | 14 38 | mpbirand | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ↔ ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ) ) |
| 40 | elioomnf | ⊢ ( 0 ∈ ℝ* → ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ↔ ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ) ) ) | |
| 41 | 20 40 | ax-mp | ⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ↔ ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ) ) |
| 42 | 34 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ℝ ) |
| 43 | 42 | biantrurd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ↔ ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ) ) ) |
| 44 | 41 43 | bitr4id | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ↔ ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ) ) |
| 45 | 3 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) Fn ℝ ) |
| 46 | 30 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) Fn ℝ ) |
| 47 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | |
| 48 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → - 𝑇 ∈ ℝ ) |
| 49 | i1ff | ⊢ ( 𝐻 ∈ dom ∫1 → 𝐻 : ℝ ⟶ ℝ ) | |
| 50 | 8 49 | syl | ⊢ ( 𝜑 → 𝐻 : ℝ ⟶ ℝ ) |
| 51 | 50 | ffnd | ⊢ ( 𝜑 → 𝐻 Fn ℝ ) |
| 52 | 51 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐻 Fn ℝ ) |
| 53 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) | |
| 54 | 32 48 52 53 | ofc1 | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ‘ 𝑥 ) = ( - 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) |
| 55 | 25 | recnd | ⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 56 | 55 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℂ ) |
| 57 | 50 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ ) |
| 58 | 57 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ ) |
| 59 | 58 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐻 ‘ 𝑥 ) ∈ ℂ ) |
| 60 | 56 59 | mulneg1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( - 𝑇 · ( 𝐻 ‘ 𝑥 ) ) = - ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) |
| 61 | 54 60 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ‘ 𝑥 ) = - ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) |
| 62 | 45 46 32 32 33 47 61 | ofval | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) + - ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 63 | 19 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 64 | 63 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
| 65 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
| 66 | 65 57 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ) |
| 67 | 66 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ) |
| 68 | 67 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℂ ) |
| 69 | 64 68 | negsubd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) + - ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 70 | 62 69 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 71 | 70 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ↔ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) < 0 ) ) |
| 72 | 0red | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ∈ ℝ ) | |
| 73 | 63 67 72 | ltsubaddd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) < 0 ↔ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < ( 0 + ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
| 74 | 68 | addlidd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 0 + ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) = ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) |
| 75 | 74 | breq2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < ( 0 + ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ↔ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 76 | 71 73 75 | 3bitrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ‘ 𝑥 ) < 0 ↔ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 77 | 39 44 76 | 3bitrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ↔ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 78 | 77 | notbid | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑥 ∈ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ↔ ¬ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 79 | eldif | ⊢ ( 𝑥 ∈ ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ) | |
| 80 | 79 | baib | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ↔ ¬ 𝑥 ∈ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ) |
| 81 | 80 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ↔ ¬ 𝑥 ∈ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ) |
| 82 | 67 63 | lenltd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ¬ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) < ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 83 | 78 81 82 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 84 | 83 | rabbi2dva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ℝ ∩ ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ) |
| 85 | rembl | ⊢ ℝ ∈ dom vol | |
| 86 | i1fmbf | ⊢ ( ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ∈ dom ∫1 → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ∈ MblFn ) | |
| 87 | 28 86 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ∈ MblFn ) |
| 88 | 2 87 | mbfadd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ∈ MblFn ) |
| 89 | mbfima | ⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) ∈ MblFn ∧ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) : ℝ ⟶ ℝ ) → ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ∈ dom vol ) | |
| 90 | 88 34 89 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ∈ dom vol ) |
| 91 | cmmbl | ⊢ ( ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ∈ dom vol → ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ∈ dom vol ) | |
| 92 | 90 91 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ∈ dom vol ) |
| 93 | inmbl | ⊢ ( ( ℝ ∈ dom vol ∧ ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ∈ dom vol ) → ( ℝ ∩ ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ) ∈ dom vol ) | |
| 94 | 85 92 93 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ℝ ∩ ( ℝ ∖ ( ◡ ( ( 𝐹 ‘ 𝑛 ) ∘f + ( ( ℝ × { - 𝑇 } ) ∘f · 𝐻 ) ) “ ( -∞ (,) 0 ) ) ) ) ∈ dom vol ) |
| 95 | 84 94 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } ∈ dom vol ) |
| 96 | 95 11 | fmptd | ⊢ ( 𝜑 → 𝐴 : ℕ ⟶ dom vol ) |
| 97 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 98 | fveq2 | ⊢ ( 𝑛 = 𝑗 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 99 | fvoveq1 | ⊢ ( 𝑛 = 𝑗 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) | |
| 100 | 98 99 | breq12d | ⊢ ( 𝑛 = 𝑗 → ( ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝐹 ‘ 𝑗 ) ∘r ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) |
| 101 | 100 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ∘r ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
| 102 | 97 101 | sylib | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ∘r ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
| 103 | 102 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∘r ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) |
| 104 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 105 | 98 | feq1d | ⊢ ( 𝑛 = 𝑗 → ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) |
| 106 | 105 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 107 | 104 106 | sylib | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 108 | 107 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 109 | 108 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) Fn ℝ ) |
| 110 | peano2nn | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ ) | |
| 111 | fveq2 | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) | |
| 112 | 111 | feq1d | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 ‘ ( 𝑗 + 1 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) |
| 113 | 112 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 𝑗 + 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 114 | 104 110 113 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 115 | 114 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) Fn ℝ ) |
| 116 | 31 | a1i | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ℝ ∈ V ) |
| 117 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | |
| 118 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) = ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) | |
| 119 | 109 115 116 116 33 117 118 | ofrfval | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑗 ) ∘r ≤ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ↔ ∀ 𝑥 ∈ ℝ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) ) |
| 120 | 103 119 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) |
| 121 | 120 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) |
| 122 | 25 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
| 123 | 50 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝐻 : ℝ ⟶ ℝ ) |
| 124 | 123 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ ) |
| 125 | 122 124 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ) |
| 126 | fss | ⊢ ( ( ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ℝ ) | |
| 127 | 108 17 126 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ℝ ) |
| 128 | 127 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ) |
| 129 | fss | ⊢ ( ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) : ℝ ⟶ ℝ ) | |
| 130 | 114 17 129 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) : ℝ ⟶ ℝ ) |
| 131 | 130 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ∈ ℝ ) |
| 132 | letr | ⊢ ( ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ∈ ℝ ) → ( ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) ) | |
| 133 | 125 128 131 132 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∧ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) ) |
| 134 | 121 133 | mpan2d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) ) |
| 135 | 134 | ss2rabdv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ⊆ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) } ) |
| 136 | 98 | fveq1d | ⊢ ( 𝑛 = 𝑗 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 137 | 136 | breq2d | ⊢ ( 𝑛 = 𝑗 → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 138 | 137 | rabbidv | ⊢ ( 𝑛 = 𝑗 → { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ) |
| 139 | 31 | rabex | ⊢ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ∈ V |
| 140 | 138 11 139 | fvmpt | ⊢ ( 𝑗 ∈ ℕ → ( 𝐴 ‘ 𝑗 ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ) |
| 141 | 140 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐴 ‘ 𝑗 ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ) |
| 142 | 110 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℕ ) |
| 143 | 111 | fveq1d | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) |
| 144 | 143 | breq2d | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) ) ) |
| 145 | 144 | rabbidv | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) } ) |
| 146 | 31 | rabex | ⊢ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) } ∈ V |
| 147 | 145 11 146 | fvmpt | ⊢ ( ( 𝑗 + 1 ) ∈ ℕ → ( 𝐴 ‘ ( 𝑗 + 1 ) ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) } ) |
| 148 | 142 147 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐴 ‘ ( 𝑗 + 1 ) ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ‘ 𝑥 ) } ) |
| 149 | 135 141 148 | 3sstr4d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐴 ‘ 𝑗 ) ⊆ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) |
| 150 | 66 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ) |
| 151 | 57 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ ) |
| 152 | 63 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 153 | 152 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℝ ) |
| 154 | 153 | frnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ⊆ ℝ ) |
| 155 | 1nn | ⊢ 1 ∈ ℕ | |
| 156 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | |
| 157 | 156 152 | dmmptd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ℕ ) |
| 158 | 155 157 | eleqtrrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 1 ∈ dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 159 | 158 | ne0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ) |
| 160 | dm0rn0 | ⊢ ( dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ∅ ) | |
| 161 | 160 | necon3bii | ⊢ ( dom ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ) |
| 162 | 159 161 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ) |
| 163 | 153 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) Fn ℕ ) |
| 164 | breq1 | ⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) → ( 𝑧 ≤ 𝑦 ↔ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ) ) | |
| 165 | 164 | ralrn | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ) ) |
| 166 | 163 165 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ) ) |
| 167 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 168 | 167 | fveq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 169 | fvex | ⊢ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ V | |
| 170 | 168 156 169 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 171 | 170 | breq1d | ⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ↔ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 172 | 171 | ralbiia | ⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 173 | 168 | breq1d | ⊢ ( 𝑛 = 𝑚 → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 174 | 173 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ↔ ∀ 𝑚 ∈ ℕ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 175 | 172 174 | bitr4i | ⊢ ( ∀ 𝑚 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ≤ 𝑦 ↔ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) |
| 176 | 166 175 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ↔ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 177 | 176 | rexbidv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑦 ) ) |
| 178 | 5 177 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ) |
| 179 | 154 162 178 | suprcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ ) |
| 180 | 179 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ∈ ℝ ) |
| 181 | 24 | simp3d | ⊢ ( 𝜑 → 𝑇 < 1 ) |
| 182 | 181 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → 𝑇 < 1 ) |
| 183 | 25 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → 𝑇 ∈ ℝ ) |
| 184 | 1red | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → 1 ∈ ℝ ) | |
| 185 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → 0 < ( 𝐻 ‘ 𝑥 ) ) | |
| 186 | ltmul1 | ⊢ ( ( 𝑇 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝐻 ‘ 𝑥 ) ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝑇 < 1 ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( 1 · ( 𝐻 ‘ 𝑥 ) ) ) ) | |
| 187 | 183 184 151 185 186 | syl112anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝑇 < 1 ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( 1 · ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 188 | 182 187 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( 1 · ( 𝐻 ‘ 𝑥 ) ) ) |
| 189 | 151 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ℂ ) |
| 190 | 189 | mullidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 1 · ( 𝐻 ‘ 𝑥 ) ) = ( 𝐻 ‘ 𝑥 ) ) |
| 191 | 188 190 | breqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( 𝐻 ‘ 𝑥 ) ) |
| 192 | 179 1 | fmptd | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
| 193 | 192 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn ℝ ) |
| 194 | 31 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 195 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 𝑦 ) ) | |
| 196 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) | |
| 197 | 196 | mpteq2dv | ⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) |
| 198 | 197 | rneqd | ⊢ ( 𝑥 = 𝑦 → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) = ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) |
| 199 | 198 | supeq1d | ⊢ ( 𝑥 = 𝑦 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 200 | ltso | ⊢ < Or ℝ | |
| 201 | 200 | supex | ⊢ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ∈ V |
| 202 | 199 1 201 | fvmpt | ⊢ ( 𝑦 ∈ ℝ → ( 𝐺 ‘ 𝑦 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 203 | 202 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐺 ‘ 𝑦 ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 204 | 51 193 194 194 33 195 203 | ofrfval | ⊢ ( 𝜑 → ( 𝐻 ∘r ≤ 𝐺 ↔ ∀ 𝑦 ∈ ℝ ( 𝐻 ‘ 𝑦 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ) ) |
| 205 | 9 204 | mpbid | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ ( 𝐻 ‘ 𝑦 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 206 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑦 ) ) | |
| 207 | 206 199 | breq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐻 ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ↔ ( 𝐻 ‘ 𝑦 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ) ) |
| 208 | 207 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ ℝ ( 𝐻 ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ↔ ∀ 𝑦 ∈ ℝ ( 𝐻 ‘ 𝑦 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) , ℝ , < ) ) |
| 209 | 205 208 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝐻 ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 210 | 209 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐻 ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 211 | 210 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝐻 ‘ 𝑥 ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 212 | 150 151 180 191 211 | ltletrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ) |
| 213 | 154 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ⊆ ℝ ) |
| 214 | 162 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ) |
| 215 | 178 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ) |
| 216 | suprlub | ⊢ ( ( ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ⊆ ℝ ∧ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) 𝑧 ≤ 𝑦 ) ∧ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ) → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ↔ ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < 𝑤 ) ) | |
| 217 | 213 214 215 150 216 | syl31anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < sup ( ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) , ℝ , < ) ↔ ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < 𝑤 ) ) |
| 218 | 212 217 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < 𝑤 ) |
| 219 | 163 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) Fn ℕ ) |
| 220 | breq2 | ⊢ ( 𝑤 = ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < 𝑤 ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) ) | |
| 221 | 220 | rexrn | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) Fn ℕ → ( ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < 𝑤 ↔ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) ) |
| 222 | 219 221 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < 𝑤 ↔ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ) ) |
| 223 | fvex | ⊢ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ V | |
| 224 | 136 156 223 | fvmpt | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 225 | 224 | breq2d | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 226 | 225 | rexbiia | ⊢ ( ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑗 ) ↔ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 227 | 222 226 | bitrdi | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( ∃ 𝑤 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < 𝑤 ↔ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 228 | 218 227 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 229 | 183 151 | remulcld | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ) |
| 230 | 108 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 231 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝑥 ∈ ℝ ) | |
| 232 | 230 231 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 233 | elrege0 | ⊢ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) | |
| 234 | 232 233 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 235 | 234 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ) |
| 236 | 235 | adantlrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ) |
| 237 | ltle | ⊢ ( ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ) → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) | |
| 238 | 229 236 237 | syl2an2r | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 239 | 238 | reximdva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ( ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) < ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 240 | 228 239 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 241 | 240 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 0 < ( 𝐻 ‘ 𝑥 ) ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 242 | 155 | ne0ii | ⊢ ℕ ≠ ∅ |
| 243 | 66 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ) |
| 244 | 243 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ ℝ ) |
| 245 | 0red | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → 0 ∈ ℝ ) | |
| 246 | 234 | adantlrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 247 | 246 | simpld | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℝ ) |
| 248 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝐻 ‘ 𝑥 ) ≤ 0 ) | |
| 249 | 57 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ ) |
| 250 | 249 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝐻 ‘ 𝑥 ) ∈ ℝ ) |
| 251 | 25 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → 𝑇 ∈ ℝ ) |
| 252 | 24 | simp2d | ⊢ ( 𝜑 → 0 < 𝑇 ) |
| 253 | 252 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → 0 < 𝑇 ) |
| 254 | lemul2 | ⊢ ( ( ( 𝐻 ‘ 𝑥 ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ) ) → ( ( 𝐻 ‘ 𝑥 ) ≤ 0 ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( 𝑇 · 0 ) ) ) | |
| 255 | 250 245 251 253 254 | syl112anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐻 ‘ 𝑥 ) ≤ 0 ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( 𝑇 · 0 ) ) ) |
| 256 | 248 255 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( 𝑇 · 0 ) ) |
| 257 | 251 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → 𝑇 ∈ ℂ ) |
| 258 | 257 | mul01d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑇 · 0 ) = 0 ) |
| 259 | 256 258 | breqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ 0 ) |
| 260 | 246 | simprd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → 0 ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 261 | 244 245 247 259 260 | letrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 262 | 261 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) → ∀ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 263 | r19.2z | ⊢ ( ( ℕ ≠ ∅ ∧ ∀ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | |
| 264 | 242 262 263 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 265 | 264 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐻 ‘ 𝑥 ) ≤ 0 ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 266 | 0red | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ∈ ℝ ) | |
| 267 | 241 265 266 57 | ltlecasei | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 268 | 267 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) |
| 269 | rabid2 | ⊢ ( ℝ = { 𝑥 ∈ ℝ ∣ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) | |
| 270 | 268 269 | sylibr | ⊢ ( 𝜑 → ℝ = { 𝑥 ∈ ℝ ∣ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ) |
| 271 | iunrab | ⊢ ∪ 𝑗 ∈ ℕ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ∃ 𝑗 ∈ ℕ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } | |
| 272 | 270 271 | eqtr4di | ⊢ ( 𝜑 → ℝ = ∪ 𝑗 ∈ ℕ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ) |
| 273 | 141 | iuneq2dv | ⊢ ( 𝜑 → ∪ 𝑗 ∈ ℕ ( 𝐴 ‘ 𝑗 ) = ∪ 𝑗 ∈ ℕ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) } ) |
| 274 | 96 | ffnd | ⊢ ( 𝜑 → 𝐴 Fn ℕ ) |
| 275 | fniunfv | ⊢ ( 𝐴 Fn ℕ → ∪ 𝑗 ∈ ℕ ( 𝐴 ‘ 𝑗 ) = ∪ ran 𝐴 ) | |
| 276 | 274 275 | syl | ⊢ ( 𝜑 → ∪ 𝑗 ∈ ℕ ( 𝐴 ‘ 𝑗 ) = ∪ ran 𝐴 ) |
| 277 | 272 273 276 | 3eqtr2rd | ⊢ ( 𝜑 → ∪ ran 𝐴 = ℝ ) |
| 278 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) | |
| 279 | 96 149 277 8 278 | itg1climres | ⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ⇝ ( ∫1 ‘ 𝐻 ) ) |
| 280 | nnex | ⊢ ℕ ∈ V | |
| 281 | 280 | mptex | ⊢ ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ∈ V |
| 282 | 281 | a1i | ⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ∈ V ) |
| 283 | fveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝐴 ‘ 𝑗 ) = ( 𝐴 ‘ 𝑘 ) ) | |
| 284 | 283 | eleq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) ↔ 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ) ) |
| 285 | 284 | ifbid | ⊢ ( 𝑗 = 𝑘 → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) = if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) |
| 286 | 285 | mpteq2dv | ⊢ ( 𝑗 = 𝑘 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) |
| 287 | 286 | fveq2d | ⊢ ( 𝑗 = 𝑘 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) |
| 288 | eqid | ⊢ ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) | |
| 289 | fvex | ⊢ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ∈ V | |
| 290 | 287 288 289 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) |
| 291 | 290 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) |
| 292 | 96 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ‘ 𝑘 ) ∈ dom vol ) |
| 293 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) | |
| 294 | 293 | i1fres | ⊢ ( ( 𝐻 ∈ dom ∫1 ∧ ( 𝐴 ‘ 𝑘 ) ∈ dom vol ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 295 | 8 292 294 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 296 | itg1cl | ⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) | |
| 297 | 295 296 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
| 298 | 291 297 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 299 | 298 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 300 | 287 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) = ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 301 | eqid | ⊢ ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) | |
| 302 | ovex | ⊢ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ∈ V | |
| 303 | 300 301 302 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) = ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 304 | 290 | oveq2d | ⊢ ( 𝑘 ∈ ℕ → ( 𝑇 · ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) ) = ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 305 | 303 304 | eqtr4d | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) = ( 𝑇 · ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) ) ) |
| 306 | 305 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) = ( 𝑇 · ( ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ‘ 𝑘 ) ) ) |
| 307 | 12 13 279 55 282 299 306 | climmulc2 | ⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ⇝ ( 𝑇 · ( ∫1 ‘ 𝐻 ) ) ) |
| 308 | icossicc | ⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) | |
| 309 | fss | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 310 | 3 308 309 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 311 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑆 ∈ ℝ ) |
| 312 | itg2cl | ⊢ ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) | |
| 313 | 310 312 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 314 | 313 | fmpttd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ* ) |
| 315 | 314 | frnd | ⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* ) |
| 316 | fvex | ⊢ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ V | |
| 317 | 316 | elabrex | ⊢ ( 𝑛 ∈ ℕ → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) } ) |
| 318 | 317 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) } ) |
| 319 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 320 | 319 | rnmpt | ⊢ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) = { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) } |
| 321 | 318 320 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 322 | supxrub | ⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ* ∧ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ) | |
| 323 | 315 321 322 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 324 | 323 6 | breqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑆 ) |
| 325 | itg2lecl | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑆 ∈ ℝ ∧ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑆 ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) | |
| 326 | 310 311 324 325 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
| 327 | 326 | fmpttd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ ) |
| 328 | 310 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 329 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 330 | 329 | feq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ↔ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ) ) |
| 331 | 330 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ↔ ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 332 | 328 331 | sylib | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 333 | peano2nn | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) | |
| 334 | fveq2 | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 335 | 334 | feq1d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) ) |
| 336 | 335 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑛 + 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 337 | 332 333 336 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 338 | itg2le | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝐹 ‘ 𝑛 ) ∘r ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 339 | 310 337 4 338 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 340 | 339 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 341 | 2fveq3 | ⊢ ( 𝑛 = 𝑘 → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) = ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 342 | fvex | ⊢ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ V | |
| 343 | 341 319 342 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 344 | peano2nn | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 345 | 2fveq3 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) = ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) | |
| 346 | fvex | ⊢ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ V | |
| 347 | 345 319 346 | fvmpt | ⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 348 | 344 347 | syl | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 349 | 343 348 | breq12d | ⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ↔ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 350 | 349 | ralbiia | ⊢ ( ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ↔ ∀ 𝑘 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 351 | fvoveq1 | ⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | |
| 352 | 351 | fveq2d | ⊢ ( 𝑛 = 𝑘 → ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 353 | 341 352 | breq12d | ⊢ ( 𝑛 = 𝑘 → ( ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ↔ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 354 | 353 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ↔ ∀ 𝑘 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 355 | 350 354 | bitr4i | ⊢ ( ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ↔ ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 356 | 340 355 | sylibr | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 357 | 356 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 358 | 324 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑆 ) |
| 359 | 343 | breq1d | ⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ↔ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) |
| 360 | 359 | ralbiia | ⊢ ( ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) |
| 361 | 341 | breq1d | ⊢ ( 𝑛 = 𝑘 → ( ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) |
| 362 | 361 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) |
| 363 | 360 362 | bitr4i | ⊢ ( ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑥 ) |
| 364 | breq2 | ⊢ ( 𝑥 = 𝑆 → ( ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑆 ) ) | |
| 365 | 364 | ralbidv | ⊢ ( 𝑥 = 𝑆 → ( ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑆 ) ) |
| 366 | 363 365 | bitrid | ⊢ ( 𝑥 = 𝑆 → ( ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑆 ) ) |
| 367 | 366 | rspcev | ⊢ ( ( 𝑆 ∈ ℝ ∧ ∀ 𝑛 ∈ ℕ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑆 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ) |
| 368 | 10 358 367 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ) |
| 369 | 12 13 327 357 368 | climsup | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⇝ sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ , < ) ) |
| 370 | 327 | frnd | ⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ ) |
| 371 | 319 313 | dmmptd | ⊢ ( 𝜑 → dom ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ℕ ) |
| 372 | 242 | a1i | ⊢ ( 𝜑 → ℕ ≠ ∅ ) |
| 373 | 371 372 | eqnetrd | ⊢ ( 𝜑 → dom ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ≠ ∅ ) |
| 374 | dm0rn0 | ⊢ ( dom ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ∅ ) | |
| 375 | 374 | necon3bii | ⊢ ( dom ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ≠ ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ≠ ∅ ) |
| 376 | 373 375 | sylib | ⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ≠ ∅ ) |
| 377 | 316 319 | fnmpti | ⊢ ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) Fn ℕ |
| 378 | breq1 | ⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) → ( 𝑧 ≤ 𝑥 ↔ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ) ) | |
| 379 | 378 | ralrn | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 380 | 377 379 | mp1i | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 381 | 380 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 382 | 368 381 | mpbird | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ 𝑥 ) |
| 383 | supxrre | ⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⊆ ℝ ∧ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) 𝑧 ≤ 𝑥 ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ , < ) ) | |
| 384 | 370 376 382 383 | syl3anc | ⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ , < ) ) |
| 385 | 6 384 | eqtr2id | ⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ , < ) = 𝑆 ) |
| 386 | 369 385 | breqtrd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⇝ 𝑆 ) |
| 387 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑇 ∈ ℝ ) |
| 388 | 96 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐴 ‘ 𝑗 ) ∈ dom vol ) |
| 389 | 278 | i1fres | ⊢ ( ( 𝐻 ∈ dom ∫1 ∧ ( 𝐴 ‘ 𝑗 ) ∈ dom vol ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 390 | 8 388 389 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 ) |
| 391 | itg1cl | ⊢ ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) | |
| 392 | 390 391 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ∈ ℝ ) |
| 393 | 387 392 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ∈ ℝ ) |
| 394 | 393 | fmpttd | ⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) : ℕ ⟶ ℝ ) |
| 395 | 394 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 396 | 327 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 397 | 329 | feq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) |
| 398 | 397 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 399 | 104 398 | sylib | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 400 | 399 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 401 | fss | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 402 | 400 308 401 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 403 | 31 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ℝ ∈ V ) |
| 404 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑇 ∈ ℝ ) |
| 405 | 404 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
| 406 | fvex | ⊢ ( 𝐻 ‘ 𝑥 ) ∈ V | |
| 407 | c0ex | ⊢ 0 ∈ V | |
| 408 | 406 407 | ifex | ⊢ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ∈ V |
| 409 | 408 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ∈ V ) |
| 410 | fconstmpt | ⊢ ( ℝ × { 𝑇 } ) = ( 𝑥 ∈ ℝ ↦ 𝑇 ) | |
| 411 | 410 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ℝ × { 𝑇 } ) = ( 𝑥 ∈ ℝ ↦ 𝑇 ) ) |
| 412 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) | |
| 413 | 403 405 409 411 412 | offval2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ℝ × { 𝑇 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑇 · if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) |
| 414 | ovif2 | ⊢ ( 𝑇 · if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) = if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , ( 𝑇 · 0 ) ) | |
| 415 | 55 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑇 ∈ ℂ ) |
| 416 | 415 | mul01d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 · 0 ) = 0 ) |
| 417 | 416 | ifeq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , ( 𝑇 · 0 ) ) = if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) |
| 418 | 414 417 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 · if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) = if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) |
| 419 | 418 | mpteq2dv | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ ( 𝑇 · if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ) |
| 420 | 413 419 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ℝ × { 𝑇 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ) |
| 421 | 295 404 | i1fmulc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ℝ × { 𝑇 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ∈ dom ∫1 ) |
| 422 | 420 421 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ∈ dom ∫1 ) |
| 423 | iftrue | ⊢ ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) = ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) | |
| 424 | 423 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) = ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ) |
| 425 | 329 | fveq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 426 | 425 | breq2d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ↔ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 427 | 426 | rabbidv | ⊢ ( 𝑛 = 𝑘 → { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ) |
| 428 | 31 | rabex | ⊢ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ∈ V |
| 429 | 427 11 428 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ‘ 𝑘 ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ) |
| 430 | 429 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 ‘ 𝑘 ) = { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ) |
| 431 | 430 | eleq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ↔ 𝑥 ∈ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ) ) |
| 432 | 431 | biimpa | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ) → 𝑥 ∈ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ) |
| 433 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) ) | |
| 434 | 433 | simprbi | ⊢ ( 𝑥 ∈ { 𝑥 ∈ ℝ ∣ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) } → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 435 | 432 434 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ) → ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 436 | 424 435 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 437 | iffalse | ⊢ ( ¬ 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) = 0 ) | |
| 438 | 437 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) = 0 ) |
| 439 | 400 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 440 | elrege0 | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) ) | |
| 441 | 440 | simprbi | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) → 0 ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 442 | 439 441 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 443 | 442 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 444 | 438 443 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 445 | 436 444 | pm2.61dan | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 446 | 445 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 447 | ovex | ⊢ ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) ∈ V | |
| 448 | 447 407 | ifex | ⊢ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ∈ V |
| 449 | 448 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ∈ V ) |
| 450 | fvexd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ∈ V ) | |
| 451 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ) | |
| 452 | 400 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝑥 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 453 | 403 449 450 451 452 | ofrfval2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ∘r ≤ ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ≤ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 454 | 446 453 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ∘r ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 455 | itg2ub | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ∈ dom ∫1 ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ∘r ≤ ( 𝐹 ‘ 𝑘 ) ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 456 | 402 422 454 455 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 457 | 303 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) = ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 458 | 295 404 | itg1mulc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∫1 ‘ ( ( ℝ × { 𝑇 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) = ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 459 | 420 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∫1 ‘ ( ( ℝ × { 𝑇 } ) ∘f · ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ) ) |
| 460 | 457 458 459 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) = ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) , ( 𝑇 · ( 𝐻 ‘ 𝑥 ) ) , 0 ) ) ) ) |
| 461 | 343 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ∫2 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 462 | 456 460 461 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝑇 · ( ∫1 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑗 ) , ( 𝐻 ‘ 𝑥 ) , 0 ) ) ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ∫2 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
| 463 | 12 13 307 386 395 396 462 | climle | ⊢ ( 𝜑 → ( 𝑇 · ( ∫1 ‘ 𝐻 ) ) ≤ 𝑆 ) |