This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | off.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) | |
| off.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | ||
| off.3 | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝑇 ) | ||
| off.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| off.5 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| off.6 | ⊢ ( 𝐴 ∩ 𝐵 ) = 𝐶 | ||
| Assertion | off | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) : 𝐶 ⟶ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | off.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) | |
| 2 | off.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | |
| 3 | off.3 | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝑇 ) | |
| 4 | off.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | off.5 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 6 | off.6 | ⊢ ( 𝐴 ∩ 𝐵 ) = 𝐶 | |
| 7 | 2 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 8 | 3 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
| 9 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 10 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 11 | 7 8 4 5 6 9 10 | offval | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑧 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 12 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 13 | 6 12 | eqsstrri | ⊢ 𝐶 ⊆ 𝐴 |
| 14 | 13 | sseli | ⊢ ( 𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐴 ) |
| 15 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑆 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑆 ) | |
| 16 | 2 14 15 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑆 ) |
| 17 | inss2 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 | |
| 18 | 6 17 | eqsstrri | ⊢ 𝐶 ⊆ 𝐵 |
| 19 | 18 | sseli | ⊢ ( 𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐵 ) |
| 20 | ffvelcdm | ⊢ ( ( 𝐺 : 𝐵 ⟶ 𝑇 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑇 ) | |
| 21 | 3 19 20 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑇 ) |
| 22 | 1 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) |
| 24 | ovrspc2v | ⊢ ( ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑆 ∧ ( 𝐺 ‘ 𝑧 ) ∈ 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 𝑅 𝑦 ) ∈ 𝑈 ) → ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ∈ 𝑈 ) | |
| 25 | 16 21 23 24 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ∈ 𝑈 ) |
| 26 | 11 25 | fmpt3d | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) : 𝐶 ⟶ 𝑈 ) |