This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldif | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) → 𝐴 ∈ V ) | |
| 2 | elex | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ V ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ V ) |
| 4 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 5 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶 ) ) | |
| 6 | 5 | notbid | ⊢ ( 𝑥 = 𝐴 → ( ¬ 𝑥 ∈ 𝐶 ↔ ¬ 𝐴 ∈ 𝐶 ) ) |
| 7 | 4 6 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ) |
| 8 | df-dif | ⊢ ( 𝐵 ∖ 𝐶 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) } | |
| 9 | 7 8 | elab2g | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ) ) |
| 10 | 1 3 9 | pm5.21nii | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ) |