This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg1cl | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg1val | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) = Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) | |
| 2 | i1frn | ⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) | |
| 3 | difss | ⊢ ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 | |
| 4 | ssfi | ⊢ ( ( ran 𝐹 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 ) → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) | |
| 5 | 2 3 4 | sylancl | ⊢ ( 𝐹 ∈ dom ∫1 → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) |
| 6 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 7 | 6 | frnd | ⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ⊆ ℝ ) |
| 8 | 7 | ssdifssd | ⊢ ( 𝐹 ∈ dom ∫1 → ( ran 𝐹 ∖ { 0 } ) ⊆ ℝ ) |
| 9 | 8 | sselda | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑥 ∈ ℝ ) |
| 10 | i1fima2sn | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) | |
| 11 | 9 10 | remulcld | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ℝ ) |
| 12 | 5 11 | fsumrecl | ⊢ ( 𝐹 ∈ dom ∫1 → Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ℝ ) |
| 13 | 1 12 | eqeltrd | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) ∈ ℝ ) |