This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricting the simple function F to the increasing sequence A ( n ) of measurable sets whose union is RR yields a sequence of simple functions whose integrals approach the integral of F . (Contributed by Mario Carneiro, 15-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg1climres.1 | ⊢ ( 𝜑 → 𝐴 : ℕ ⟶ dom vol ) | |
| itg1climres.2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ⊆ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) | ||
| itg1climres.3 | ⊢ ( 𝜑 → ∪ ran 𝐴 = ℝ ) | ||
| itg1climres.4 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | ||
| itg1climres.5 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) | ||
| Assertion | itg1climres | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ 𝐺 ) ) ⇝ ( ∫1 ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg1climres.1 | ⊢ ( 𝜑 → 𝐴 : ℕ ⟶ dom vol ) | |
| 2 | itg1climres.2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ⊆ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) | |
| 3 | itg1climres.3 | ⊢ ( 𝜑 → ∪ ran 𝐴 = ℝ ) | |
| 4 | itg1climres.4 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| 5 | itg1climres.5 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| 6 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 7 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 8 | i1frn | ⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) | |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) |
| 10 | difss | ⊢ ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 | |
| 11 | ssfi | ⊢ ( ( ran 𝐹 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 ) → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) | |
| 12 | 9 10 11 | sylancl | ⊢ ( 𝜑 → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) |
| 13 | 1zzd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 1 ∈ ℤ ) | |
| 14 | i1fima | ⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol ) | |
| 15 | 4 14 | syl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol ) |
| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol ) |
| 17 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ∈ dom vol ) |
| 18 | 17 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ∈ dom vol ) |
| 19 | inmbl | ⊢ ( ( ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol ∧ ( 𝐴 ‘ 𝑛 ) ∈ dom vol ) → ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ∈ dom vol ) | |
| 20 | 16 18 19 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ∈ dom vol ) |
| 21 | mblvol | ⊢ ( ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ∈ dom vol → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) = ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) = ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 23 | inss1 | ⊢ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ⊆ ( ◡ 𝐹 “ { 𝑘 } ) | |
| 24 | 23 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ⊆ ( ◡ 𝐹 “ { 𝑘 } ) ) |
| 25 | mblss | ⊢ ( ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol → ( ◡ 𝐹 “ { 𝑘 } ) ⊆ ℝ ) | |
| 26 | 16 25 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( ◡ 𝐹 “ { 𝑘 } ) ⊆ ℝ ) |
| 27 | mblvol | ⊢ ( ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) | |
| 28 | 16 27 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 29 | i1fima2sn | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ∈ ℝ ) | |
| 30 | 4 29 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ∈ ℝ ) |
| 31 | 30 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ∈ ℝ ) |
| 32 | 28 31 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ∈ ℝ ) |
| 33 | ovolsscl | ⊢ ( ( ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ⊆ ( ◡ 𝐹 “ { 𝑘 } ) ∧ ( ◡ 𝐹 “ { 𝑘 } ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ∈ ℝ ) → ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ∈ ℝ ) | |
| 34 | 24 26 32 33 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 35 | 22 34 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 36 | 35 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) : ℕ ⟶ ℝ ) |
| 37 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ⊆ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) |
| 38 | sslin | ⊢ ( ( 𝐴 ‘ 𝑛 ) ⊆ ( 𝐴 ‘ ( 𝑛 + 1 ) ) → ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ⊆ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 39 | 37 38 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ⊆ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) |
| 40 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝐴 : ℕ ⟶ dom vol ) |
| 41 | peano2nn | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) | |
| 42 | ffvelcdm | ⊢ ( ( 𝐴 : ℕ ⟶ dom vol ∧ ( 𝑛 + 1 ) ∈ ℕ ) → ( 𝐴 ‘ ( 𝑛 + 1 ) ) ∈ dom vol ) | |
| 43 | 40 41 42 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ ( 𝑛 + 1 ) ) ∈ dom vol ) |
| 44 | inmbl | ⊢ ( ( ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol ∧ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ∈ dom vol ) → ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ∈ dom vol ) | |
| 45 | 16 43 44 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ∈ dom vol ) |
| 46 | mblss | ⊢ ( ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ∈ dom vol → ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ⊆ ℝ ) | |
| 47 | 45 46 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ⊆ ℝ ) |
| 48 | ovolss | ⊢ ( ( ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ⊆ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ∧ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ⊆ ℝ ) → ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ≤ ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) ) | |
| 49 | 39 47 48 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ≤ ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 50 | mblvol | ⊢ ( ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ∈ dom vol → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) = ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) ) | |
| 51 | 45 50 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) = ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 52 | 49 22 51 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ≤ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 53 | 52 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ≤ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 54 | fveq2 | ⊢ ( 𝑛 = 𝑗 → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑗 ) ) | |
| 55 | 54 | ineq2d | ⊢ ( 𝑛 = 𝑗 → ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) = ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) |
| 56 | 55 | fveq2d | ⊢ ( 𝑛 = 𝑗 → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ) |
| 57 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) | |
| 58 | fvex | ⊢ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ∈ V | |
| 59 | 56 57 58 | fvmpt | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ) |
| 60 | peano2nn | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ ) | |
| 61 | fveq2 | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) | |
| 62 | 61 | ineq2d | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) = ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
| 63 | 62 | fveq2d | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 64 | fvex | ⊢ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) ∈ V | |
| 65 | 63 57 64 | fvmpt | ⊢ ( ( 𝑗 + 1 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 66 | 60 65 | syl | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 67 | 59 66 | breq12d | ⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ↔ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ≤ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 68 | 67 | ralbiia | ⊢ ( ∀ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ↔ ∀ 𝑗 ∈ ℕ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ≤ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 69 | fvoveq1 | ⊢ ( 𝑛 = 𝑗 → ( 𝐴 ‘ ( 𝑛 + 1 ) ) = ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) | |
| 70 | 69 | ineq2d | ⊢ ( 𝑛 = 𝑗 → ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) = ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
| 71 | 70 | fveq2d | ⊢ ( 𝑛 = 𝑗 → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 72 | 56 71 | breq12d | ⊢ ( 𝑛 = 𝑗 → ( ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ≤ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) ↔ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ≤ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 73 | 72 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ≤ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) ↔ ∀ 𝑗 ∈ ℕ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ≤ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 74 | 68 73 | bitr4i | ⊢ ( ∀ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ↔ ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ≤ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 75 | 53 74 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ∀ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) |
| 76 | 75 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) |
| 77 | ovolss | ⊢ ( ( ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ⊆ ( ◡ 𝐹 “ { 𝑘 } ) ∧ ( ◡ 𝐹 “ { 𝑘 } ) ⊆ ℝ ) → ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ≤ ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) | |
| 78 | 23 26 77 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ≤ ( vol* ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 79 | 78 22 28 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 80 | 79 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 81 | 59 | breq1d | ⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ↔ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) |
| 82 | 81 | ralbiia | ⊢ ( ∀ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ↔ ∀ 𝑗 ∈ ℕ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 83 | 56 | breq1d | ⊢ ( 𝑛 = 𝑗 → ( ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ↔ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) |
| 84 | 83 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ↔ ∀ 𝑗 ∈ ℕ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 85 | 82 84 | bitr4i | ⊢ ( ∀ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ↔ ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 86 | 80 85 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ∀ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 87 | brralrspcev | ⊢ ( ( ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ∈ ℝ ∧ ∀ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ≤ 𝑥 ) | |
| 88 | 30 86 87 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ≤ 𝑥 ) |
| 89 | 6 13 36 76 88 | climsup | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ⇝ sup ( ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) , ℝ , < ) ) |
| 90 | 20 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) : ℕ ⟶ dom vol ) |
| 91 | 39 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ∀ 𝑛 ∈ ℕ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ⊆ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) |
| 92 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) | |
| 93 | fvex | ⊢ ( 𝐴 ‘ 𝑗 ) ∈ V | |
| 94 | 93 | inex2 | ⊢ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ∈ V |
| 95 | 55 92 94 | fvmpt | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) |
| 96 | fvex | ⊢ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ∈ V | |
| 97 | 96 | inex2 | ⊢ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ∈ V |
| 98 | 62 92 97 | fvmpt | ⊢ ( ( 𝑗 + 1 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
| 99 | 60 98 | syl | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
| 100 | 95 99 | sseq12d | ⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ‘ ( 𝑗 + 1 ) ) ↔ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ⊆ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 101 | 100 | ralbiia | ⊢ ( ∀ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ‘ ( 𝑗 + 1 ) ) ↔ ∀ 𝑗 ∈ ℕ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ⊆ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
| 102 | 55 70 | sseq12d | ⊢ ( 𝑛 = 𝑗 → ( ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ⊆ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ↔ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ⊆ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 103 | 102 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ℕ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ⊆ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ↔ ∀ 𝑗 ∈ ℕ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ⊆ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
| 104 | 101 103 | bitr4i | ⊢ ( ∀ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ‘ ( 𝑗 + 1 ) ) ↔ ∀ 𝑛 ∈ ℕ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ⊆ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ ( 𝑛 + 1 ) ) ) ) |
| 105 | 91 104 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ∀ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ‘ ( 𝑗 + 1 ) ) ) |
| 106 | volsup | ⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) : ℕ ⟶ dom vol ∧ ∀ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ‘ ( 𝑗 + 1 ) ) ) → ( vol ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) = sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) | |
| 107 | 90 105 106 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) = sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) |
| 108 | 95 | iuneq2i | ⊢ ∪ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ∪ 𝑗 ∈ ℕ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) |
| 109 | 55 | cbviunv | ⊢ ∪ 𝑛 ∈ ℕ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) = ∪ 𝑗 ∈ ℕ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) |
| 110 | iunin2 | ⊢ ∪ 𝑛 ∈ ℕ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) = ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) | |
| 111 | 108 109 110 | 3eqtr2i | ⊢ ∪ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) |
| 112 | ffn | ⊢ ( 𝐴 : ℕ ⟶ dom vol → 𝐴 Fn ℕ ) | |
| 113 | fniunfv | ⊢ ( 𝐴 Fn ℕ → ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) = ∪ ran 𝐴 ) | |
| 114 | 1 112 113 | 3syl | ⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) = ∪ ran 𝐴 ) |
| 115 | 114 3 | eqtrd | ⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) = ℝ ) |
| 116 | 115 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) = ℝ ) |
| 117 | 116 | ineq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) = ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ℝ ) ) |
| 118 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑘 } ) ∈ dom vol ) |
| 119 | 118 25 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑘 } ) ⊆ ℝ ) |
| 120 | dfss2 | ⊢ ( ( ◡ 𝐹 “ { 𝑘 } ) ⊆ ℝ ↔ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ℝ ) = ( ◡ 𝐹 “ { 𝑘 } ) ) | |
| 121 | 119 120 | sylib | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ℝ ) = ( ◡ 𝐹 “ { 𝑘 } ) ) |
| 122 | 117 121 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) = ( ◡ 𝐹 “ { 𝑘 } ) ) |
| 123 | 111 122 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ∪ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( ◡ 𝐹 “ { 𝑘 } ) ) |
| 124 | ffn | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) : ℕ ⟶ dom vol → ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) Fn ℕ ) | |
| 125 | fniunfv | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) Fn ℕ → ∪ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ∪ ran ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) | |
| 126 | 90 124 125 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ∪ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ∪ ran ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 127 | 123 126 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑘 } ) = ∪ ran ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 128 | 127 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = ( vol ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) |
| 129 | 36 | frnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ⊆ ℝ ) |
| 130 | 36 | fdmd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → dom ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) = ℕ ) |
| 131 | 1nn | ⊢ 1 ∈ ℕ | |
| 132 | ne0i | ⊢ ( 1 ∈ ℕ → ℕ ≠ ∅ ) | |
| 133 | 131 132 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ℕ ≠ ∅ ) |
| 134 | 130 133 | eqnetrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → dom ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ≠ ∅ ) |
| 135 | dm0rn0 | ⊢ ( dom ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) = ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) = ∅ ) | |
| 136 | 135 | necon3bii | ⊢ ( dom ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ≠ ∅ ↔ ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ≠ ∅ ) |
| 137 | 134 136 | sylib | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ≠ ∅ ) |
| 138 | ffn | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) : ℕ ⟶ ℝ → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) Fn ℕ ) | |
| 139 | breq1 | ⊢ ( 𝑧 = ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) → ( 𝑧 ≤ 𝑥 ↔ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ≤ 𝑥 ) ) | |
| 140 | 139 | ralrn | ⊢ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) 𝑧 ≤ 𝑥 ↔ ∀ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 141 | 36 138 140 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) 𝑧 ≤ 𝑥 ↔ ∀ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 142 | 141 | rexbidv | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 143 | 88 142 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) 𝑧 ≤ 𝑥 ) |
| 144 | supxrre | ⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ⊆ ℝ ∧ ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) 𝑧 ≤ 𝑥 ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) , ℝ* , < ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) , ℝ , < ) ) | |
| 145 | 129 137 143 144 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) , ℝ* , < ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) , ℝ , < ) ) |
| 146 | volf | ⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) | |
| 147 | 146 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → vol : dom vol ⟶ ( 0 [,] +∞ ) ) |
| 148 | 147 20 | cofmpt | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ∘ ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) |
| 149 | 148 | rneqd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ran ( vol ∘ ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) = ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) |
| 150 | rnco2 | ⊢ ran ( vol ∘ ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) = ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) | |
| 151 | 149 150 | eqtr3di | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) = ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) |
| 152 | 151 | supeq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) , ℝ* , < ) = sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) |
| 153 | 145 152 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → sup ( ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) , ℝ , < ) = sup ( ( vol “ ran ( 𝑛 ∈ ℕ ↦ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) |
| 154 | 107 128 153 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) = sup ( ran ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) , ℝ , < ) ) |
| 155 | 89 154 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ⇝ ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) |
| 156 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 157 | frn | ⊢ ( 𝐹 : ℝ ⟶ ℝ → ran 𝐹 ⊆ ℝ ) | |
| 158 | 4 156 157 | 3syl | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 159 | 158 | ssdifssd | ⊢ ( 𝜑 → ( ran 𝐹 ∖ { 0 } ) ⊆ ℝ ) |
| 160 | 159 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑘 ∈ ℝ ) |
| 161 | 160 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑘 ∈ ℂ ) |
| 162 | nnex | ⊢ ℕ ∈ V | |
| 163 | 162 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ∈ V |
| 164 | 163 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑛 ∈ ℕ ↦ ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ∈ V ) |
| 165 | 36 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ∈ ℝ ) |
| 166 | 165 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 167 | 56 | oveq2d | ⊢ ( 𝑛 = 𝑗 → ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) = ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ) ) |
| 168 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) | |
| 169 | ovex | ⊢ ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ) ∈ V | |
| 170 | 167 168 169 | fvmpt | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 ) = ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ) ) |
| 171 | 59 | oveq2d | ⊢ ( 𝑗 ∈ ℕ → ( 𝑘 · ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ) = ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ) ) |
| 172 | 170 171 | eqtr4d | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 ) = ( 𝑘 · ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ) ) |
| 173 | 172 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 ) = ( 𝑘 · ( ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ) ) |
| 174 | 6 13 155 161 164 166 173 | climmulc2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑛 ∈ ℕ ↦ ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ⇝ ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) |
| 175 | 162 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ 𝐺 ) ) ∈ V |
| 176 | 175 | a1i | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ 𝐺 ) ) ∈ V ) |
| 177 | 160 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → 𝑘 ∈ ℝ ) |
| 178 | 177 35 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ∈ ℝ ) |
| 179 | 178 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑛 ∈ ℕ ↦ ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) : ℕ ⟶ ℝ ) |
| 180 | 179 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 ) ∈ ℝ ) |
| 181 | 180 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 182 | 181 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ∧ 𝑗 ∈ ℕ ) ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 183 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐹 ∈ dom ∫1 ) |
| 184 | 5 | i1fres | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝐴 ‘ 𝑛 ) ∈ dom vol ) → 𝐺 ∈ dom ∫1 ) |
| 185 | 183 17 184 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐺 ∈ dom ∫1 ) |
| 186 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) |
| 187 | ffn | ⊢ ( 𝐹 : ℝ ⟶ ℝ → 𝐹 Fn ℝ ) | |
| 188 | 4 156 187 | 3syl | ⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 189 | 188 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐹 Fn ℝ ) |
| 190 | fnfvelrn | ⊢ ( ( 𝐹 Fn ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) | |
| 191 | 189 190 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) |
| 192 | i1f0rn | ⊢ ( 𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹 ) | |
| 193 | 4 192 | syl | ⊢ ( 𝜑 → 0 ∈ ran 𝐹 ) |
| 194 | 193 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ∈ ran 𝐹 ) |
| 195 | 191 194 | ifcld | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ ran 𝐹 ) |
| 196 | 195 5 | fmptd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐺 : ℝ ⟶ ran 𝐹 ) |
| 197 | frn | ⊢ ( 𝐺 : ℝ ⟶ ran 𝐹 → ran 𝐺 ⊆ ran 𝐹 ) | |
| 198 | ssdif | ⊢ ( ran 𝐺 ⊆ ran 𝐹 → ( ran 𝐺 ∖ { 0 } ) ⊆ ( ran 𝐹 ∖ { 0 } ) ) | |
| 199 | 196 197 198 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ran 𝐺 ∖ { 0 } ) ⊆ ( ran 𝐹 ∖ { 0 } ) ) |
| 200 | 158 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran 𝐹 ⊆ ℝ ) |
| 201 | 200 | ssdifd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ran 𝐹 ∖ { 0 } ) ⊆ ( ℝ ∖ { 0 } ) ) |
| 202 | itg1val2 | ⊢ ( ( 𝐺 ∈ dom ∫1 ∧ ( ( ran 𝐹 ∖ { 0 } ) ∈ Fin ∧ ( ran 𝐺 ∖ { 0 } ) ⊆ ( ran 𝐹 ∖ { 0 } ) ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ ( ℝ ∖ { 0 } ) ) ) → ( ∫1 ‘ 𝐺 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐺 “ { 𝑘 } ) ) ) ) | |
| 203 | 185 186 199 201 202 | syl13anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫1 ‘ 𝐺 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐺 “ { 𝑘 } ) ) ) ) |
| 204 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 205 | c0ex | ⊢ 0 ∈ V | |
| 206 | 204 205 | ifex | ⊢ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
| 207 | 5 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V ) → ( 𝐺 ‘ 𝑥 ) = if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 208 | 206 207 | mpan2 | ⊢ ( 𝑥 ∈ ℝ → ( 𝐺 ‘ 𝑥 ) = if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 209 | 208 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ 𝑥 ) = if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
| 210 | 209 | eqeq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑥 ) = 𝑘 ↔ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) = 𝑘 ) ) |
| 211 | eldifsni | ⊢ ( 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) → 𝑘 ≠ 0 ) | |
| 212 | 211 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ≠ 0 ) |
| 213 | neeq1 | ⊢ ( if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) = 𝑘 → ( if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ≠ 0 ↔ 𝑘 ≠ 0 ) ) | |
| 214 | 212 213 | syl5ibrcom | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) = 𝑘 → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ≠ 0 ) ) |
| 215 | iffalse | ⊢ ( ¬ 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) = 0 ) | |
| 216 | 215 | necon1ai | ⊢ ( if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ≠ 0 → 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) ) |
| 217 | 214 216 | syl6 | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) = 𝑘 → 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) ) ) |
| 218 | 217 | pm4.71rd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) = 𝑘 ↔ ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) ∧ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) = 𝑘 ) ) ) |
| 219 | 210 218 | bitrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑥 ) = 𝑘 ↔ ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) ∧ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) = 𝑘 ) ) ) |
| 220 | iftrue | ⊢ ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) → if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 221 | 220 | eqeq1d | ⊢ ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) → ( if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) = 𝑘 ↔ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) |
| 222 | 221 | pm5.32i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) ∧ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) = 𝑘 ) ↔ ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) |
| 223 | 222 | biancomi | ⊢ ( ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) ∧ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) = 𝑘 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = 𝑘 ∧ 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) ) ) |
| 224 | 219 223 | bitrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑥 ) = 𝑘 ↔ ( ( 𝐹 ‘ 𝑥 ) = 𝑘 ∧ 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 225 | 224 | pm5.32da | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ( 𝑥 ∈ ℝ ∧ ( 𝐺 ‘ 𝑥 ) = 𝑘 ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑘 ∧ 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) ) ) ) ) |
| 226 | anass | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ∧ 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑥 ) = 𝑘 ∧ 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) ) ) ) | |
| 227 | 225 226 | bitr4di | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ( 𝑥 ∈ ℝ ∧ ( 𝐺 ‘ 𝑥 ) = 𝑘 ) ↔ ( ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ∧ 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 228 | i1ff | ⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) | |
| 229 | ffn | ⊢ ( 𝐺 : ℝ ⟶ ℝ → 𝐺 Fn ℝ ) | |
| 230 | 185 228 229 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐺 Fn ℝ ) |
| 231 | 230 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝐺 Fn ℝ ) |
| 232 | fniniseg | ⊢ ( 𝐺 Fn ℝ → ( 𝑥 ∈ ( ◡ 𝐺 “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐺 ‘ 𝑥 ) = 𝑘 ) ) ) | |
| 233 | 231 232 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑥 ∈ ( ◡ 𝐺 “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐺 ‘ 𝑥 ) = 𝑘 ) ) ) |
| 234 | elin | ⊢ ( 𝑥 ∈ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ↔ ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) ∧ 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) ) ) | |
| 235 | 189 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝐹 Fn ℝ ) |
| 236 | fniniseg | ⊢ ( 𝐹 Fn ℝ → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) ) | |
| 237 | 235 236 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) ) |
| 238 | 237 | anbi1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) ∧ 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) ) ↔ ( ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ∧ 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 239 | 234 238 | bitrid | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑥 ∈ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ↔ ( ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ∧ 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 240 | 227 233 239 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑥 ∈ ( ◡ 𝐺 “ { 𝑘 } ) ↔ 𝑥 ∈ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 241 | 240 | alrimiv | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ∀ 𝑥 ( 𝑥 ∈ ( ◡ 𝐺 “ { 𝑘 } ) ↔ 𝑥 ∈ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 242 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 ‘ 𝑛 ) , ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| 243 | 5 242 | nfcxfr | ⊢ Ⅎ 𝑥 𝐺 |
| 244 | 243 | nfcnv | ⊢ Ⅎ 𝑥 ◡ 𝐺 |
| 245 | nfcv | ⊢ Ⅎ 𝑥 { 𝑘 } | |
| 246 | 244 245 | nfima | ⊢ Ⅎ 𝑥 ( ◡ 𝐺 “ { 𝑘 } ) |
| 247 | nfcv | ⊢ Ⅎ 𝑥 ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) | |
| 248 | 246 247 | cleqf | ⊢ ( ( ◡ 𝐺 “ { 𝑘 } ) = ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( ◡ 𝐺 “ { 𝑘 } ) ↔ 𝑥 ∈ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 249 | 241 248 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐺 “ { 𝑘 } ) = ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) |
| 250 | 249 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐺 “ { 𝑘 } ) ) = ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 251 | 250 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑘 · ( vol ‘ ( ◡ 𝐺 “ { 𝑘 } ) ) ) = ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) |
| 252 | 251 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐺 “ { 𝑘 } ) ) ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) |
| 253 | 203 252 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫1 ‘ 𝐺 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) |
| 254 | 253 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ 𝐺 ) ) = ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ) |
| 255 | 254 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ 𝐺 ) ) ‘ 𝑗 ) = ( ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 ) ) |
| 256 | 167 | sumeq2sdv | ⊢ ( 𝑛 = 𝑗 → Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ) ) |
| 257 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) = ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) | |
| 258 | sumex | ⊢ Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ) ∈ V | |
| 259 | 256 257 258 | fvmpt | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ) ) |
| 260 | 170 | sumeq2sdv | ⊢ ( 𝑗 ∈ ℕ → Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( ( 𝑛 ∈ ℕ ↦ ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑗 ) ) ) ) ) |
| 261 | 259 260 | eqtr4d | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( ( 𝑛 ∈ ℕ ↦ ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 ) ) |
| 262 | 255 261 | sylan9eq | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ 𝐺 ) ) ‘ 𝑗 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( ( 𝑛 ∈ ℕ ↦ ( 𝑘 · ( vol ‘ ( ( ◡ 𝐹 “ { 𝑘 } ) ∩ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ‘ 𝑗 ) ) |
| 263 | 6 7 12 174 176 182 262 | climfsum | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ 𝐺 ) ) ⇝ Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) |
| 264 | itg1val | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) | |
| 265 | 4 264 | syl | ⊢ ( 𝜑 → ( ∫1 ‘ 𝐹 ) = Σ 𝑘 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑘 · ( vol ‘ ( ◡ 𝐹 “ { 𝑘 } ) ) ) ) |
| 266 | 263 265 | breqtrrd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ 𝐺 ) ) ⇝ ( ∫1 ‘ 𝐹 ) ) |