This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative constant times a simple function gives another simple function. (Contributed by Mario Carneiro, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fmulc.2 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| i1fmulc.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| Assertion | i1fmulc | ⊢ ( 𝜑 → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∈ dom ∫1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fmulc.2 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| 2 | i1fmulc.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | reex | ⊢ ℝ ∈ V | |
| 4 | 3 | a1i | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ℝ ∈ V ) |
| 5 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 7 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → 𝐹 : ℝ ⟶ ℝ ) |
| 8 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → 𝐴 ∈ ℝ ) |
| 9 | 0red | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → 0 ∈ ℝ ) | |
| 10 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝑥 ∈ ℝ ) → 𝐴 = 0 ) | |
| 11 | 10 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 · 𝑥 ) = ( 0 · 𝑥 ) ) |
| 12 | mul02lem2 | ⊢ ( 𝑥 ∈ ℝ → ( 0 · 𝑥 ) = 0 ) | |
| 13 | 12 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( 0 · 𝑥 ) = 0 ) |
| 14 | 11 13 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 · 𝑥 ) = 0 ) |
| 15 | 4 7 8 9 14 | caofid2 | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) = ( ℝ × { 0 } ) ) |
| 16 | i1f0 | ⊢ ( ℝ × { 0 } ) ∈ dom ∫1 | |
| 17 | 15 16 | eqeltrdi | ⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∈ dom ∫1 ) |
| 18 | remulcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 20 | fconst6g | ⊢ ( 𝐴 ∈ ℝ → ( ℝ × { 𝐴 } ) : ℝ ⟶ ℝ ) | |
| 21 | 2 20 | syl | ⊢ ( 𝜑 → ( ℝ × { 𝐴 } ) : ℝ ⟶ ℝ ) |
| 22 | 3 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 23 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 24 | 19 21 6 22 22 23 | off | ⊢ ( 𝜑 → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ℝ ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ ℝ ) |
| 26 | i1frn | ⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) | |
| 27 | 1 26 | syl | ⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) |
| 28 | ovex | ⊢ ( 𝐴 · 𝑦 ) ∈ V | |
| 29 | eqid | ⊢ ( 𝑦 ∈ ran 𝐹 ↦ ( 𝐴 · 𝑦 ) ) = ( 𝑦 ∈ ran 𝐹 ↦ ( 𝐴 · 𝑦 ) ) | |
| 30 | 28 29 | fnmpti | ⊢ ( 𝑦 ∈ ran 𝐹 ↦ ( 𝐴 · 𝑦 ) ) Fn ran 𝐹 |
| 31 | dffn4 | ⊢ ( ( 𝑦 ∈ ran 𝐹 ↦ ( 𝐴 · 𝑦 ) ) Fn ran 𝐹 ↔ ( 𝑦 ∈ ran 𝐹 ↦ ( 𝐴 · 𝑦 ) ) : ran 𝐹 –onto→ ran ( 𝑦 ∈ ran 𝐹 ↦ ( 𝐴 · 𝑦 ) ) ) | |
| 32 | 30 31 | mpbi | ⊢ ( 𝑦 ∈ ran 𝐹 ↦ ( 𝐴 · 𝑦 ) ) : ran 𝐹 –onto→ ran ( 𝑦 ∈ ran 𝐹 ↦ ( 𝐴 · 𝑦 ) ) |
| 33 | fofi | ⊢ ( ( ran 𝐹 ∈ Fin ∧ ( 𝑦 ∈ ran 𝐹 ↦ ( 𝐴 · 𝑦 ) ) : ran 𝐹 –onto→ ran ( 𝑦 ∈ ran 𝐹 ↦ ( 𝐴 · 𝑦 ) ) ) → ran ( 𝑦 ∈ ran 𝐹 ↦ ( 𝐴 · 𝑦 ) ) ∈ Fin ) | |
| 34 | 27 32 33 | sylancl | ⊢ ( 𝜑 → ran ( 𝑦 ∈ ran 𝐹 ↦ ( 𝐴 · 𝑦 ) ) ∈ Fin ) |
| 35 | id | ⊢ ( 𝑤 ∈ ran 𝐹 → 𝑤 ∈ ran 𝐹 ) | |
| 36 | elsni | ⊢ ( 𝑥 ∈ { 𝐴 } → 𝑥 = 𝐴 ) | |
| 37 | 36 | oveq1d | ⊢ ( 𝑥 ∈ { 𝐴 } → ( 𝑥 · 𝑤 ) = ( 𝐴 · 𝑤 ) ) |
| 38 | oveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝑤 ) ) | |
| 39 | 38 | rspceeqv | ⊢ ( ( 𝑤 ∈ ran 𝐹 ∧ ( 𝑥 · 𝑤 ) = ( 𝐴 · 𝑤 ) ) → ∃ 𝑦 ∈ ran 𝐹 ( 𝑥 · 𝑤 ) = ( 𝐴 · 𝑦 ) ) |
| 40 | 35 37 39 | syl2anr | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑤 ∈ ran 𝐹 ) → ∃ 𝑦 ∈ ran 𝐹 ( 𝑥 · 𝑤 ) = ( 𝐴 · 𝑦 ) ) |
| 41 | ovex | ⊢ ( 𝑥 · 𝑤 ) ∈ V | |
| 42 | eqeq1 | ⊢ ( 𝑧 = ( 𝑥 · 𝑤 ) → ( 𝑧 = ( 𝐴 · 𝑦 ) ↔ ( 𝑥 · 𝑤 ) = ( 𝐴 · 𝑦 ) ) ) | |
| 43 | 42 | rexbidv | ⊢ ( 𝑧 = ( 𝑥 · 𝑤 ) → ( ∃ 𝑦 ∈ ran 𝐹 𝑧 = ( 𝐴 · 𝑦 ) ↔ ∃ 𝑦 ∈ ran 𝐹 ( 𝑥 · 𝑤 ) = ( 𝐴 · 𝑦 ) ) ) |
| 44 | 41 43 | elab | ⊢ ( ( 𝑥 · 𝑤 ) ∈ { 𝑧 ∣ ∃ 𝑦 ∈ ran 𝐹 𝑧 = ( 𝐴 · 𝑦 ) } ↔ ∃ 𝑦 ∈ ran 𝐹 ( 𝑥 · 𝑤 ) = ( 𝐴 · 𝑦 ) ) |
| 45 | 40 44 | sylibr | ⊢ ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑤 ∈ ran 𝐹 ) → ( 𝑥 · 𝑤 ) ∈ { 𝑧 ∣ ∃ 𝑦 ∈ ran 𝐹 𝑧 = ( 𝐴 · 𝑦 ) } ) |
| 46 | 45 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝐴 } ∧ 𝑤 ∈ ran 𝐹 ) ) → ( 𝑥 · 𝑤 ) ∈ { 𝑧 ∣ ∃ 𝑦 ∈ ran 𝐹 𝑧 = ( 𝐴 · 𝑦 ) } ) |
| 47 | fconstg | ⊢ ( 𝐴 ∈ ℝ → ( ℝ × { 𝐴 } ) : ℝ ⟶ { 𝐴 } ) | |
| 48 | 2 47 | syl | ⊢ ( 𝜑 → ( ℝ × { 𝐴 } ) : ℝ ⟶ { 𝐴 } ) |
| 49 | 6 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 50 | dffn3 | ⊢ ( 𝐹 Fn ℝ ↔ 𝐹 : ℝ ⟶ ran 𝐹 ) | |
| 51 | 49 50 | sylib | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ran 𝐹 ) |
| 52 | 46 48 51 22 22 23 | off | ⊢ ( 𝜑 → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) : ℝ ⟶ { 𝑧 ∣ ∃ 𝑦 ∈ ran 𝐹 𝑧 = ( 𝐴 · 𝑦 ) } ) |
| 53 | 52 | frnd | ⊢ ( 𝜑 → ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ⊆ { 𝑧 ∣ ∃ 𝑦 ∈ ran 𝐹 𝑧 = ( 𝐴 · 𝑦 ) } ) |
| 54 | 29 | rnmpt | ⊢ ran ( 𝑦 ∈ ran 𝐹 ↦ ( 𝐴 · 𝑦 ) ) = { 𝑧 ∣ ∃ 𝑦 ∈ ran 𝐹 𝑧 = ( 𝐴 · 𝑦 ) } |
| 55 | 53 54 | sseqtrrdi | ⊢ ( 𝜑 → ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ⊆ ran ( 𝑦 ∈ ran 𝐹 ↦ ( 𝐴 · 𝑦 ) ) ) |
| 56 | 34 55 | ssfid | ⊢ ( 𝜑 → ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∈ Fin ) |
| 57 | 56 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∈ Fin ) |
| 58 | 24 | frnd | ⊢ ( 𝜑 → ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ⊆ ℝ ) |
| 59 | 58 | ssdifssd | ⊢ ( 𝜑 → ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ⊆ ℝ ) |
| 60 | 59 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ⊆ ℝ ) |
| 61 | 60 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝑦 ∈ ℝ ) |
| 62 | 1 2 | i1fmulclem | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝑦 } ) = ( ◡ 𝐹 “ { ( 𝑦 / 𝐴 ) } ) ) |
| 63 | 61 62 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝑦 } ) = ( ◡ 𝐹 “ { ( 𝑦 / 𝐴 ) } ) ) |
| 64 | i1fima | ⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ { ( 𝑦 / 𝐴 ) } ) ∈ dom vol ) | |
| 65 | 1 64 | syl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ { ( 𝑦 / 𝐴 ) } ) ∈ dom vol ) |
| 66 | 65 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( ◡ 𝐹 “ { ( 𝑦 / 𝐴 ) } ) ∈ dom vol ) |
| 67 | 63 66 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝑦 } ) ∈ dom vol ) |
| 68 | 63 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝑦 } ) ) = ( vol ‘ ( ◡ 𝐹 “ { ( 𝑦 / 𝐴 ) } ) ) ) |
| 69 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝐹 ∈ dom ∫1 ) |
| 70 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝐴 ∈ ℝ ) |
| 71 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝐴 ≠ 0 ) | |
| 72 | 61 70 71 | redivcld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( 𝑦 / 𝐴 ) ∈ ℝ ) |
| 73 | 61 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝑦 ∈ ℂ ) |
| 74 | 70 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝐴 ∈ ℂ ) |
| 75 | eldifsni | ⊢ ( 𝑦 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) → 𝑦 ≠ 0 ) | |
| 76 | 75 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → 𝑦 ≠ 0 ) |
| 77 | 73 74 76 71 | divne0d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( 𝑦 / 𝐴 ) ≠ 0 ) |
| 78 | eldifsn | ⊢ ( ( 𝑦 / 𝐴 ) ∈ ( ℝ ∖ { 0 } ) ↔ ( ( 𝑦 / 𝐴 ) ∈ ℝ ∧ ( 𝑦 / 𝐴 ) ≠ 0 ) ) | |
| 79 | 72 77 78 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( 𝑦 / 𝐴 ) ∈ ( ℝ ∖ { 0 } ) ) |
| 80 | i1fima2sn | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ ( 𝑦 / 𝐴 ) ∈ ( ℝ ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { ( 𝑦 / 𝐴 ) } ) ) ∈ ℝ ) | |
| 81 | 69 79 80 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { ( 𝑦 / 𝐴 ) } ) ) ∈ ℝ ) |
| 82 | 68 81 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 0 ) ∧ 𝑦 ∈ ( ran ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) “ { 𝑦 } ) ) ∈ ℝ ) |
| 83 | 25 57 67 82 | i1fd | ⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∈ dom ∫1 ) |
| 84 | 17 83 | pm2.61dane | ⊢ ( 𝜑 → ( ( ℝ × { 𝐴 } ) ∘f · 𝐹 ) ∈ dom ∫1 ) |