This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function relation acting on maps. (Contributed by Mario Carneiro, 20-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | offval2.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| offval2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) | ||
| offval2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑋 ) | ||
| offval2.4 | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) | ||
| offval2.5 | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) | ||
| Assertion | ofrfval2 | ⊢ ( 𝜑 → ( 𝐹 ∘r 𝑅 𝐺 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 𝑅 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval2.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | offval2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) | |
| 3 | offval2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑋 ) | |
| 4 | offval2.4 | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) | |
| 5 | offval2.5 | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) | |
| 6 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ) |
| 7 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 8 | 7 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
| 9 | 6 8 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
| 10 | 4 | fneq1d | ⊢ ( 𝜑 → ( 𝐹 Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) ) |
| 11 | 9 10 | mpbird | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 12 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝑋 ) |
| 13 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 14 | 13 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝑋 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
| 15 | 12 14 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
| 16 | 5 | fneq1d | ⊢ ( 𝜑 → ( 𝐺 Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ) |
| 17 | 15 16 | mpbird | ⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 18 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 19 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 20 | 19 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) |
| 21 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐺 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 22 | 21 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) |
| 23 | 11 17 1 1 18 20 22 | ofrfval | ⊢ ( 𝜑 → ( 𝐹 ∘r 𝑅 𝐺 ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ) ) |
| 24 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) | |
| 25 | nfcv | ⊢ Ⅎ 𝑥 𝑅 | |
| 26 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) | |
| 27 | 24 25 26 | nfbr | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) |
| 28 | nfv | ⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) | |
| 29 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) | |
| 30 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) | |
| 31 | 29 30 | breq12d | ⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) ) |
| 32 | 27 28 31 | cbvralw | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) |
| 33 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 34 | 7 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 35 | 33 2 34 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 36 | 13 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 37 | 33 3 36 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 38 | 35 37 | breq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ↔ 𝐵 𝑅 𝐶 ) ) |
| 39 | 38 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 𝑅 𝐶 ) ) |
| 40 | 32 39 | bitrid | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) 𝑅 ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 𝑅 𝐶 ) ) |
| 41 | 23 40 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ∘r 𝑅 𝐺 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 𝑅 𝐶 ) ) |