This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabbidv.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| Assertion | rabbidv | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbidv.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 3 | 2 | rabbidva | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |