This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An empty domain is equivalent to an empty range. (Contributed by NM, 21-May-1998) Avoid ax-10 , ax-11 , ax-12 . (Revised by TM, 24-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dm0rn0 | ⊢ ( dom 𝐴 = ∅ ↔ ran 𝐴 = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 𝐴 𝑦 ↔ 𝑥 𝐴 𝑦 ) ) | |
| 2 | breq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑧 𝐴 𝑦 ↔ 𝑧 𝐴 𝑤 ) ) | |
| 3 | 1 2 | excomw | ⊢ ( ∃ 𝑧 ∃ 𝑦 𝑧 𝐴 𝑦 ↔ ∃ 𝑦 ∃ 𝑧 𝑧 𝐴 𝑦 ) |
| 4 | breq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐴 𝑤 ) ) | |
| 5 | 1 4 | sylan9bbr | ⊢ ( ( 𝑦 = 𝑤 ∧ 𝑧 = 𝑥 ) → ( 𝑧 𝐴 𝑦 ↔ 𝑥 𝐴 𝑤 ) ) |
| 6 | 5 | cbvex2vw | ⊢ ( ∃ 𝑦 ∃ 𝑧 𝑧 𝐴 𝑦 ↔ ∃ 𝑤 ∃ 𝑥 𝑥 𝐴 𝑤 ) |
| 7 | 3 6 | bitri | ⊢ ( ∃ 𝑧 ∃ 𝑦 𝑧 𝐴 𝑦 ↔ ∃ 𝑤 ∃ 𝑥 𝑥 𝐴 𝑤 ) |
| 8 | 7 | notbii | ⊢ ( ¬ ∃ 𝑧 ∃ 𝑦 𝑧 𝐴 𝑦 ↔ ¬ ∃ 𝑤 ∃ 𝑥 𝑥 𝐴 𝑤 ) |
| 9 | alnex | ⊢ ( ∀ 𝑧 ¬ ∃ 𝑦 𝑧 𝐴 𝑦 ↔ ¬ ∃ 𝑧 ∃ 𝑦 𝑧 𝐴 𝑦 ) | |
| 10 | alnex | ⊢ ( ∀ 𝑤 ¬ ∃ 𝑥 𝑥 𝐴 𝑤 ↔ ¬ ∃ 𝑤 ∃ 𝑥 𝑥 𝐴 𝑤 ) | |
| 11 | 8 9 10 | 3bitr4i | ⊢ ( ∀ 𝑧 ¬ ∃ 𝑦 𝑧 𝐴 𝑦 ↔ ∀ 𝑤 ¬ ∃ 𝑥 𝑥 𝐴 𝑤 ) |
| 12 | noel | ⊢ ¬ 𝑧 ∈ ∅ | |
| 13 | 12 | nbn | ⊢ ( ¬ ∃ 𝑦 𝑧 𝐴 𝑦 ↔ ( ∃ 𝑦 𝑧 𝐴 𝑦 ↔ 𝑧 ∈ ∅ ) ) |
| 14 | 13 | albii | ⊢ ( ∀ 𝑧 ¬ ∃ 𝑦 𝑧 𝐴 𝑦 ↔ ∀ 𝑧 ( ∃ 𝑦 𝑧 𝐴 𝑦 ↔ 𝑧 ∈ ∅ ) ) |
| 15 | noel | ⊢ ¬ 𝑤 ∈ ∅ | |
| 16 | 15 | nbn | ⊢ ( ¬ ∃ 𝑥 𝑥 𝐴 𝑤 ↔ ( ∃ 𝑥 𝑥 𝐴 𝑤 ↔ 𝑤 ∈ ∅ ) ) |
| 17 | 16 | albii | ⊢ ( ∀ 𝑤 ¬ ∃ 𝑥 𝑥 𝐴 𝑤 ↔ ∀ 𝑤 ( ∃ 𝑥 𝑥 𝐴 𝑤 ↔ 𝑤 ∈ ∅ ) ) |
| 18 | 11 14 17 | 3bitr3i | ⊢ ( ∀ 𝑧 ( ∃ 𝑦 𝑧 𝐴 𝑦 ↔ 𝑧 ∈ ∅ ) ↔ ∀ 𝑤 ( ∃ 𝑥 𝑥 𝐴 𝑤 ↔ 𝑤 ∈ ∅ ) ) |
| 19 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝐴 𝑦 ↔ 𝑧 𝐴 𝑦 ) ) | |
| 20 | 19 | exbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ∃ 𝑦 𝑧 𝐴 𝑦 ) ) |
| 21 | 20 | eqabcbw | ⊢ ( { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = ∅ ↔ ∀ 𝑧 ( ∃ 𝑦 𝑧 𝐴 𝑦 ↔ 𝑧 ∈ ∅ ) ) |
| 22 | 4 | exbidv | ⊢ ( 𝑦 = 𝑤 → ( ∃ 𝑥 𝑥 𝐴 𝑦 ↔ ∃ 𝑥 𝑥 𝐴 𝑤 ) ) |
| 23 | 22 | eqabcbw | ⊢ ( { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = ∅ ↔ ∀ 𝑤 ( ∃ 𝑥 𝑥 𝐴 𝑤 ↔ 𝑤 ∈ ∅ ) ) |
| 24 | 18 21 23 | 3bitr4i | ⊢ ( { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = ∅ ↔ { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = ∅ ) |
| 25 | df-dm | ⊢ dom 𝐴 = { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } | |
| 26 | 25 | eqeq1i | ⊢ ( dom 𝐴 = ∅ ↔ { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = ∅ ) |
| 27 | dfrn2 | ⊢ ran 𝐴 = { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } | |
| 28 | 27 | eqeq1i | ⊢ ( ran 𝐴 = ∅ ↔ { 𝑦 ∣ ∃ 𝑥 𝑥 𝐴 𝑦 } = ∅ ) |
| 29 | 24 26 28 | 3bitr4i | ⊢ ( dom 𝐴 = ∅ ↔ ran 𝐴 = ∅ ) |